Temperature trends in South Africa: 1960–2003

Temperature trends in South Africa: 1960–2003 Time series of South African temperatures were investigated for temporal and spatial trends for the period 1960 to 2003. For this purpose a total of 26 climate stations were utilized, with each having sufficient data available and not having undergone major moves or changes in exposure that would influence the homogeneity of their data series. The vast majority, a total of 23 stations, showed positive trends in their annual mean maximum temperature series, 13 of them significant, with trends higher for central stations than those closer to the coast. Annual mean minimum temperatures showed 21 stations having positive trends, with 18 significant. Stations not showing significantly positive trends in annual mean minimum temperatures were mostly situated in the central interior. The annual average temperature data series of 24 of the stations showed positive trends, with 18 of them significant. Trends of mean seasonal temperature showed that temperature trends are not consistent throughout the year, with the average trend for autumn showing a maximum and spring a minimum. Monthly trends of average annual temperatures showed large differences in trend between stations, and for each station between months, but similar tendencies in trend between months were found to exist for stations close by and also for groups of stations on a regional basis. Trends in diurnal temperature range are almost equally divided between positive and negative, with the positive trends in the central interior mainly being caused by large positive trends in maximum temperature. It is also shown that, in general, days and nights with relatively high temperatures have increased, while days and nights with relatively low temperatures have decreased. The effects of urbanization on temperature trends are investigated, and the conclusion is that most stations regarded as urban stations are still useful for trend analysis; being situated on the outskirts of cities they are, therefore, not substantially influenced by the urban heat island. El Niño and La Niña events do not seem to play a significant role in the increasing temperatures observed. Copyright © 2004 Royal Meteorological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Climatology Wiley

Temperature trends in South Africa: 1960–2003

Loading next page...
 
/lp/wiley/temperature-trends-in-south-africa-1960-2003-6eEXRi1mYH
Publisher
Wiley
Copyright
Copyright © 2004 Royal Meteorological Society
ISSN
0899-8418
eISSN
1097-0088
D.O.I.
10.1002/joc.1096
Publisher site
See Article on Publisher Site

Abstract

Time series of South African temperatures were investigated for temporal and spatial trends for the period 1960 to 2003. For this purpose a total of 26 climate stations were utilized, with each having sufficient data available and not having undergone major moves or changes in exposure that would influence the homogeneity of their data series. The vast majority, a total of 23 stations, showed positive trends in their annual mean maximum temperature series, 13 of them significant, with trends higher for central stations than those closer to the coast. Annual mean minimum temperatures showed 21 stations having positive trends, with 18 significant. Stations not showing significantly positive trends in annual mean minimum temperatures were mostly situated in the central interior. The annual average temperature data series of 24 of the stations showed positive trends, with 18 of them significant. Trends of mean seasonal temperature showed that temperature trends are not consistent throughout the year, with the average trend for autumn showing a maximum and spring a minimum. Monthly trends of average annual temperatures showed large differences in trend between stations, and for each station between months, but similar tendencies in trend between months were found to exist for stations close by and also for groups of stations on a regional basis. Trends in diurnal temperature range are almost equally divided between positive and negative, with the positive trends in the central interior mainly being caused by large positive trends in maximum temperature. It is also shown that, in general, days and nights with relatively high temperatures have increased, while days and nights with relatively low temperatures have decreased. The effects of urbanization on temperature trends are investigated, and the conclusion is that most stations regarded as urban stations are still useful for trend analysis; being situated on the outskirts of cities they are, therefore, not substantially influenced by the urban heat island. El Niño and La Niña events do not seem to play a significant role in the increasing temperatures observed. Copyright © 2004 Royal Meteorological Society

Journal

International Journal of ClimatologyWiley

Published: Dec 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off