Targeted metabolomic analysis of 33 amino acids and biogenic amines in human urine by ion‐pairing HPLC‐MS/MS: Biomarkers for tacrolimus nephrotoxicity after renal transplantation

Targeted metabolomic analysis of 33 amino acids and biogenic amines in human urine by... Calcineurin inhibitor nephrotoxicity, especially for the widely used tacrolimus, has become a major concern in post‐transplant immunosuppression. Multiparametric amino acid metabolomics is useful for biomarker identification of tacrolimus nephrotoxicity, for which specific quantitative methods are highlighted as a premise. This article presents a targeted metabolomic assay to quantify 33 amino acids and biogenic amines in human urine by high‐performance liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was carried out on an Agilent Zorbax SB‐C18 column (3.0 × 150 mm, 5 μm) with addition of an ion‐pairing agent in the mobile phase, and MS/MS detection was achieved in both the positive and negative multiple reaction monitoring modes. Good correlation coefficients (r2 > 0.98) were obtained for most analytes. Intra‐ and inter‐day precision, stability, carryover and incurred sample reanalysis met with the acceptance criteria of the guidance of the US Food and Drug Administration. Analysis on urine from healthy volunteers and renal transplantation patients with tacrolimus nephrotoxicity confirmed symmetric dimethylarginine and serine as biomarkers for kidney injury, with AUC values of 0.95 and 0.81 in receiver operating characteristic analysis, respectively. Additionally, symmetric dimethylarginine exhibited a tight correlation with serum creatinine, and was therefore indicative of renal function. The targeted metabolomic assay was time and cost prohibitive for amino acid analysis in human urine, facilitating the biomarker identification of tacrolimus nephrotoxicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomedical Chromatography Wiley

Targeted metabolomic analysis of 33 amino acids and biogenic amines in human urine by ion‐pairing HPLC‐MS/MS: Biomarkers for tacrolimus nephrotoxicity after renal transplantation

Loading next page...
 
/lp/wiley/targeted-metabolomic-analysis-of-33-amino-acids-and-biogenic-amines-in-EeblN0Kmix
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0269-3879
eISSN
1099-0801
D.O.I.
10.1002/bmc.4198
Publisher site
See Article on Publisher Site

Abstract

Calcineurin inhibitor nephrotoxicity, especially for the widely used tacrolimus, has become a major concern in post‐transplant immunosuppression. Multiparametric amino acid metabolomics is useful for biomarker identification of tacrolimus nephrotoxicity, for which specific quantitative methods are highlighted as a premise. This article presents a targeted metabolomic assay to quantify 33 amino acids and biogenic amines in human urine by high‐performance liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was carried out on an Agilent Zorbax SB‐C18 column (3.0 × 150 mm, 5 μm) with addition of an ion‐pairing agent in the mobile phase, and MS/MS detection was achieved in both the positive and negative multiple reaction monitoring modes. Good correlation coefficients (r2 > 0.98) were obtained for most analytes. Intra‐ and inter‐day precision, stability, carryover and incurred sample reanalysis met with the acceptance criteria of the guidance of the US Food and Drug Administration. Analysis on urine from healthy volunteers and renal transplantation patients with tacrolimus nephrotoxicity confirmed symmetric dimethylarginine and serine as biomarkers for kidney injury, with AUC values of 0.95 and 0.81 in receiver operating characteristic analysis, respectively. Additionally, symmetric dimethylarginine exhibited a tight correlation with serum creatinine, and was therefore indicative of renal function. The targeted metabolomic assay was time and cost prohibitive for amino acid analysis in human urine, facilitating the biomarker identification of tacrolimus nephrotoxicity.

Journal

Biomedical ChromatographyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off