Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities

Synthesis, structural characterization and molecular modelling of bidentate azo dye metal... A novel azo dye ligand, namely 1‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]naphthalen‐2‐ol (HL), was synthesized. Mn2+, Co2+, Ni2+, Cu2+ and UO22+ complexes were also prepared by the treatment of HL with Mn(CH3COO)2⋅4H2O, Co(CH3COO)2⋅4H2O, Ni(CH3COO)2⋅4H2O, Cu(CH3COO)2⋅H2O, CuCl2⋅2H2O, Cu(NO3)2⋅6H2O and UO2(NO3)2⋅6H2O. The structures of these metal chelates were confirmed using elemental, spectral, magnetic moment, molar conductance and thermal analyses. The analytical data confirmed the formation of the chelates in 1:1 (metal‐to‐ligand) ratio having the formula [ML(H2O)X]Y⋅H2O, where M is Mn2+, Co2+, Ni2+, Cu2+ or UO22+; X is Cl−, NO3− or CH3COO−; and Y is H2O. The azo compound acts in a monobasic bidentate manner via the nitrogen and oxygen atoms of azo and hydroxyl groups, respectively. All complexes were found to have tetrahedral structures, except the UO22+ complex that showed octahedral geometry. The mode of interaction between the synthesized complexes and calf thymus DNA was explored by the aid of absorption spectroscopy and viscosity measurements. The azo dye and its chelates were evaluated against the growth of various bacterial and fungal strains (Escherichia coli, Staphylococcus aureus, Aspergillus flavus and Candida albicans) with insight gained into the effect of type of metal centre, type of coordinated anion and position of the metal in the periodic table on the activity of the complexes. The geometric structure of the complexes was optimized using molecular modelling. The in vitro cytotoxicity of the synthesized compounds was tested against HEPG2 cell line. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities

Loading next page...
 
/lp/wiley/synthesis-structural-characterization-and-molecular-modelling-of-mHGfvQ6mT0
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4136
Publisher site
See Article on Publisher Site

Abstract

A novel azo dye ligand, namely 1‐[(5‐mercapto‐1H‐1,2,4‐triazole‐3‐yl)diazenyl]naphthalen‐2‐ol (HL), was synthesized. Mn2+, Co2+, Ni2+, Cu2+ and UO22+ complexes were also prepared by the treatment of HL with Mn(CH3COO)2⋅4H2O, Co(CH3COO)2⋅4H2O, Ni(CH3COO)2⋅4H2O, Cu(CH3COO)2⋅H2O, CuCl2⋅2H2O, Cu(NO3)2⋅6H2O and UO2(NO3)2⋅6H2O. The structures of these metal chelates were confirmed using elemental, spectral, magnetic moment, molar conductance and thermal analyses. The analytical data confirmed the formation of the chelates in 1:1 (metal‐to‐ligand) ratio having the formula [ML(H2O)X]Y⋅H2O, where M is Mn2+, Co2+, Ni2+, Cu2+ or UO22+; X is Cl−, NO3− or CH3COO−; and Y is H2O. The azo compound acts in a monobasic bidentate manner via the nitrogen and oxygen atoms of azo and hydroxyl groups, respectively. All complexes were found to have tetrahedral structures, except the UO22+ complex that showed octahedral geometry. The mode of interaction between the synthesized complexes and calf thymus DNA was explored by the aid of absorption spectroscopy and viscosity measurements. The azo dye and its chelates were evaluated against the growth of various bacterial and fungal strains (Escherichia coli, Staphylococcus aureus, Aspergillus flavus and Candida albicans) with insight gained into the effect of type of metal centre, type of coordinated anion and position of the metal in the periodic table on the activity of the complexes. The geometric structure of the complexes was optimized using molecular modelling. The in vitro cytotoxicity of the synthesized compounds was tested against HEPG2 cell line.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off