Synthesis of chromophores and polyimides with a green chemistry approach for second‐order nonlinear optical applications

Synthesis of chromophores and polyimides with a green chemistry approach for second‐order... This article presents the synthesis of nonlinear optical responsive chromophores by adopting a green chemistry approach by coupling N‐methyl‐N‐(2‐hydroxyethyl)‐4‐amino benzaldehyde with barbituric acid, 1,3‐indanedione, and 1,3‐diethyl‐2‐thiobarbituric acid as the acceptors through stilbene linkage. We performed the synthesis in less than 10 minutes at room temperature with water as a solvent without catalyst. Two different side‐chain polyimides were synthesized from poly(hydroxy‐imide)s with chromophores by Mitsunobu reaction. The chromophores were characterized by Fourier transform infrared, 1H NMR, 13C NMR, and elemental analysis. However, the polyimides were characterized by Fourier transform infrared and 1H NMR. The inherent viscosities (ηinh) of polyimides were determined by Ubbelohde viscometer, which ranged between 0.1793 and 0.1890 dL/g. The molecular weights of the polyimides were determined using gel permeation chromatography and were in range of 23 000 to 26 000. Polyimides demonstrated an excellent solubility in polar aprotic solvents, indicating good processability. Thermal behavior of these polyimides was studied by differential scanning calorimetry and thermogravimetric analysis. The Tg's were in the range of 185°C to 255°C. The change in the molecular orientation in the polymer films after electrical poling was ascertained using ultraviolet‐visible spectrophotometer and atomic force microscopy. The thicknesses and refractive indices of the thin films were determined by an ellipsometer. The second harmonic generation coefficients of the corona‐poled polymer films at Topt's, determined by the Maker fringe technique, ranged between 59.33 and 77.82 pm/V. High thermal endurance observed for the polyimides is attributed to the extensive hydrogen bonds in the matrix. The developed polyimides showed no decay in second harmonic generation signals below 110°C, indicating the acceptance for nonlinear optical devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymers for Advanced Technologies Wiley

Synthesis of chromophores and polyimides with a green chemistry approach for second‐order nonlinear optical applications

Loading next page...
 
/lp/wiley/synthesis-of-chromophores-and-polyimides-with-a-green-chemistry-YBBt2NKzL0
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1042-7147
eISSN
1099-1581
D.O.I.
10.1002/pat.4318
Publisher site
See Article on Publisher Site

Abstract

This article presents the synthesis of nonlinear optical responsive chromophores by adopting a green chemistry approach by coupling N‐methyl‐N‐(2‐hydroxyethyl)‐4‐amino benzaldehyde with barbituric acid, 1,3‐indanedione, and 1,3‐diethyl‐2‐thiobarbituric acid as the acceptors through stilbene linkage. We performed the synthesis in less than 10 minutes at room temperature with water as a solvent without catalyst. Two different side‐chain polyimides were synthesized from poly(hydroxy‐imide)s with chromophores by Mitsunobu reaction. The chromophores were characterized by Fourier transform infrared, 1H NMR, 13C NMR, and elemental analysis. However, the polyimides were characterized by Fourier transform infrared and 1H NMR. The inherent viscosities (ηinh) of polyimides were determined by Ubbelohde viscometer, which ranged between 0.1793 and 0.1890 dL/g. The molecular weights of the polyimides were determined using gel permeation chromatography and were in range of 23 000 to 26 000. Polyimides demonstrated an excellent solubility in polar aprotic solvents, indicating good processability. Thermal behavior of these polyimides was studied by differential scanning calorimetry and thermogravimetric analysis. The Tg's were in the range of 185°C to 255°C. The change in the molecular orientation in the polymer films after electrical poling was ascertained using ultraviolet‐visible spectrophotometer and atomic force microscopy. The thicknesses and refractive indices of the thin films were determined by an ellipsometer. The second harmonic generation coefficients of the corona‐poled polymer films at Topt's, determined by the Maker fringe technique, ranged between 59.33 and 77.82 pm/V. High thermal endurance observed for the polyimides is attributed to the extensive hydrogen bonds in the matrix. The developed polyimides showed no decay in second harmonic generation signals below 110°C, indicating the acceptance for nonlinear optical devices.

Journal

Polymers for Advanced TechnologiesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off