Synthesis, molecular modeling, and biological evaluation of 4‐[5‐aryl‐3‐(thiophen‐2‐yl)‐4,5‐dihydro‐1H‐pyrazol‐1‐yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes

Synthesis, molecular modeling, and biological evaluation of... In this study, 4‐[5‐aryl‐3‐(thiophen‐2‐yl)‐4,5‐dihydro‐1H‐pyrazol‐1‐yl] benzenesulfonamides were synthesized, and inhibition effects on AChE, hCA I, and hCA II were evaluated. Ki values of the compounds toward hCA I were in the range of 24.2 ± 4.6‐49.8 ± 12.8 nm, while they were in the range of 37.3 ± 9.0‐65.3 ± 16.7 nm toward hCA II. Ki values of the acetazolamide were 282.1 ± 19.7 nm and 103.60 ± 27.6 nm toward both isoenzymes, respectively. The compounds inhibited AChE with Ki in the range of 22.7 ± 10.3‐109.1 ± 27.0 nm, whereas the tacrine had Ki value of 66.5 ± 13.8 nm. Electronic structure calculations at M06‐L/6‐31 + G(d,p)//AM1 level and molecular docking studies were also performed to enlighten inhibition mechanism and to support experimental findings. Results obtained from calculations of molecular properties showed that the compounds obey drug‐likeness properties. The experimental and computational findings obtained in this study might be useful in the design of novel inhibitors against hCA I, hCA II, and AChE. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemical Biology & Drug Design Wiley

Synthesis, molecular modeling, and biological evaluation of 4‐[5‐aryl‐3‐(thiophen‐2‐yl)‐4,5‐dihydro‐1H‐pyrazol‐1‐yl] benzenesulfonamides toward acetylcholinesterase, carbonic anhydrase I and II enzymes

Loading next page...
 
/lp/wiley/synthesis-molecular-modeling-and-biological-evaluation-of-4-5-aryl-3-MPMNx79IzJ
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons A/S
ISSN
1747-0277
eISSN
1747-0285
D.O.I.
10.1111/cbdd.13149
Publisher site
See Article on Publisher Site

Abstract

In this study, 4‐[5‐aryl‐3‐(thiophen‐2‐yl)‐4,5‐dihydro‐1H‐pyrazol‐1‐yl] benzenesulfonamides were synthesized, and inhibition effects on AChE, hCA I, and hCA II were evaluated. Ki values of the compounds toward hCA I were in the range of 24.2 ± 4.6‐49.8 ± 12.8 nm, while they were in the range of 37.3 ± 9.0‐65.3 ± 16.7 nm toward hCA II. Ki values of the acetazolamide were 282.1 ± 19.7 nm and 103.60 ± 27.6 nm toward both isoenzymes, respectively. The compounds inhibited AChE with Ki in the range of 22.7 ± 10.3‐109.1 ± 27.0 nm, whereas the tacrine had Ki value of 66.5 ± 13.8 nm. Electronic structure calculations at M06‐L/6‐31 + G(d,p)//AM1 level and molecular docking studies were also performed to enlighten inhibition mechanism and to support experimental findings. Results obtained from calculations of molecular properties showed that the compounds obey drug‐likeness properties. The experimental and computational findings obtained in this study might be useful in the design of novel inhibitors against hCA I, hCA II, and AChE.

Journal

Chemical Biology & Drug DesignWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off