Synthesis, characterization and immobilization of a novel mononuclear vanadium (V) complex on modified magnetic nanoparticles as catalyst for epoxidation of allyl alcohols

Synthesis, characterization and immobilization of a novel mononuclear vanadium (V) complex on... The 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) undergoes hydrolysis in the presence of VO(SO4) in an alkaline solution, affording mainly the bis(2‐pyridyl carbonyl)amid) VO2 complex, designated as [VO2(bpca)]. Single‐crystal X‐ray crystallography revealed that the coordination of V in complex is a distorted square‐pyramid coordinated with three nitrogen of bis(2‐pyridyl carbonyl)amid) ligand and two binding oxygen atoms. The prepared complex which successfully supported on modified Fe3O4 nanoparticles using tetraethylorthosilicate (TEOS) and (3‐aminopropyl)trimethoxysilane(APTMS)was designated as Fe3O4@SiO2@APTMS@[VO2(bpca)] complex (nanocatalyst). The complex and nanocatalyst were characterized by means of FT‐IR, XRD, VSM, SEM and TEM. The catalytic activity of [VO2(bpca)] complex and Fe3O4@SiO2@APTMS@complex as catalysts 1 and 2 were evaluated by the epoxidation of geraniol, 3‐methyl‐2‐buten‐1‐ol, trans‐2‐hexen‐1‐ol and 1‐octen‐3‐ol with 70–98% conversions and 95–100% selectivities. Based on the obtained results, the heterogeneity and reusability of the catalyst seems promising. In addition, the in vitro antibacterial activity of [VO2 (bpca)] complex have also been evaluated and compared to the activities of other vanadium complexes, tptz ligand and two standard antibacterial drugs, Nalidixic acid and Vancomycin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Synthesis, characterization and immobilization of a novel mononuclear vanadium (V) complex on modified magnetic nanoparticles as catalyst for epoxidation of allyl alcohols

Loading next page...
 
/lp/wiley/synthesis-characterization-and-immobilization-of-a-novel-mononuclear-wJq3TQa5NM
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4168
Publisher site
See Article on Publisher Site

Abstract

The 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) undergoes hydrolysis in the presence of VO(SO4) in an alkaline solution, affording mainly the bis(2‐pyridyl carbonyl)amid) VO2 complex, designated as [VO2(bpca)]. Single‐crystal X‐ray crystallography revealed that the coordination of V in complex is a distorted square‐pyramid coordinated with three nitrogen of bis(2‐pyridyl carbonyl)amid) ligand and two binding oxygen atoms. The prepared complex which successfully supported on modified Fe3O4 nanoparticles using tetraethylorthosilicate (TEOS) and (3‐aminopropyl)trimethoxysilane(APTMS)was designated as Fe3O4@SiO2@APTMS@[VO2(bpca)] complex (nanocatalyst). The complex and nanocatalyst were characterized by means of FT‐IR, XRD, VSM, SEM and TEM. The catalytic activity of [VO2(bpca)] complex and Fe3O4@SiO2@APTMS@complex as catalysts 1 and 2 were evaluated by the epoxidation of geraniol, 3‐methyl‐2‐buten‐1‐ol, trans‐2‐hexen‐1‐ol and 1‐octen‐3‐ol with 70–98% conversions and 95–100% selectivities. Based on the obtained results, the heterogeneity and reusability of the catalyst seems promising. In addition, the in vitro antibacterial activity of [VO2 (bpca)] complex have also been evaluated and compared to the activities of other vanadium complexes, tptz ligand and two standard antibacterial drugs, Nalidixic acid and Vancomycin.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off