Synthesis and properties of polylactide terpolymers P(LLA‐TMC‐GA) catalyzed by zirconium (IV) acetylacetonate

Synthesis and properties of polylactide terpolymers P(LLA‐TMC‐GA) catalyzed by zirconium (IV)... A series of L‐lactide (LLA), 1,3‐trimethylene carbonate (TMC) and glycolide (GA) terpolymers (LTG) of different monomer molar ratios were synthesized by using ring‐opening copolymerization. An effective and low‐toxic zirconium (IV) acetylacetonate Zr(Acac)4 was used as catalyst. The viscosity‐average molecular weights (Mη) of obtained polymers were all above 2.2×104 g/mol. The chemical structure and viscosity of terpolymers were confirmed by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1HNMR), 13C nuclear magnetic resonance (13CNMR) and an Ubbelohde viscometer. The thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and stress‐strain measurements. Results suggested that all terpolymers were amorphous and showed good thermal stability. Also it was found that elongation increased with the decreasing of LLA unit. More importantly, terpolymers displayed shape memory property when deformation temperatures were 14‐15 °C above Tg. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Synthesis and properties of polylactide terpolymers P(LLA‐TMC‐GA) catalyzed by zirconium (IV) acetylacetonate

Loading next page...
 
/lp/wiley/synthesis-and-properties-of-polylactide-terpolymers-p-lla-tmc-ga-95gKge0zrf
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4177
Publisher site
See Article on Publisher Site

Abstract

A series of L‐lactide (LLA), 1,3‐trimethylene carbonate (TMC) and glycolide (GA) terpolymers (LTG) of different monomer molar ratios were synthesized by using ring‐opening copolymerization. An effective and low‐toxic zirconium (IV) acetylacetonate Zr(Acac)4 was used as catalyst. The viscosity‐average molecular weights (Mη) of obtained polymers were all above 2.2×104 g/mol. The chemical structure and viscosity of terpolymers were confirmed by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1HNMR), 13C nuclear magnetic resonance (13CNMR) and an Ubbelohde viscometer. The thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and stress‐strain measurements. Results suggested that all terpolymers were amorphous and showed good thermal stability. Also it was found that elongation increased with the decreasing of LLA unit. More importantly, terpolymers displayed shape memory property when deformation temperatures were 14‐15 °C above Tg.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off