Synthesis and characterization of sodium polyaspartate‐functionalized silica‐coated magnetite nanoparticles: A heterogeneous, reusable and magnetically separable catalyst for the solvent‐free synthesis of 2‐amino‐4H‐chromene derivatives

Synthesis and characterization of sodium polyaspartate‐functionalized silica‐coated magnetite... An efficient and facile method was used for the synthesis of sodium polyaspartate‐functionalized silica‐coated magnetite nanoparticles. The structure of this nanoparticle was characterized by scanning electron microscopies, X‐ray diffraction, energy‐dispersive X‐ray, Fourier transform infrared spectroscopies and vibrating sample magnetometry. Then, this compound was used as a reusable heterogeneous catalyst for green synthesis of 2‐amino‐4H‐chromene derivatives via one‐pot three‐component reactions. This novel material showed great catalytic performance and the reactions which were carried out by this catalyst showed good to excellent yields. Besides, the catalyst could easily be separated from the reaction mixture by using an external magnetic field and it was stable enough to reuse several times without any significant reduction in the yield of reactions. Eco‐friendliness, high purity of the desired products, short reaction time and easy workup procedure can be mentioned as the other advantages of this method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Synthesis and characterization of sodium polyaspartate‐functionalized silica‐coated magnetite nanoparticles: A heterogeneous, reusable and magnetically separable catalyst for the solvent‐free synthesis of 2‐amino‐4H‐chromene derivatives

Loading next page...
 
/lp/wiley/synthesis-and-characterization-of-sodium-polyaspartate-functionalized-TaFeKSMHl1
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4108
Publisher site
See Article on Publisher Site

Abstract

An efficient and facile method was used for the synthesis of sodium polyaspartate‐functionalized silica‐coated magnetite nanoparticles. The structure of this nanoparticle was characterized by scanning electron microscopies, X‐ray diffraction, energy‐dispersive X‐ray, Fourier transform infrared spectroscopies and vibrating sample magnetometry. Then, this compound was used as a reusable heterogeneous catalyst for green synthesis of 2‐amino‐4H‐chromene derivatives via one‐pot three‐component reactions. This novel material showed great catalytic performance and the reactions which were carried out by this catalyst showed good to excellent yields. Besides, the catalyst could easily be separated from the reaction mixture by using an external magnetic field and it was stable enough to reuse several times without any significant reduction in the yield of reactions. Eco‐friendliness, high purity of the desired products, short reaction time and easy workup procedure can be mentioned as the other advantages of this method.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off