Survival and Axonal Elongation of Adult Rat Retinal Ganglion Cells

Survival and Axonal Elongation of Adult Rat Retinal Ganglion Cells A peripheral nerve exudate, collected in situ from the proximal end of a severed rat sciatic nerve, can induce substantial axonal elongation from ganglion cells when tested on explanted adult rat retinae. The responsive cells are identified on the basis of their Thy 1.1 immunostaining properties. Similar outgrowth can be obtained from explants when the culture medium is supplemented with brain‐derived neurotrophic factor (BDNF). In addition, both BDNF and the sciatic nerve exudate can prevent ganglion cell degeneration as shown by the retrograde transport of a fluorescent dye that had been applied to the superior colliculus prior to explantation. The results demonstrate that soluble components, released by lesioned peripheral nerves, can effect adult retinal ganglion cells in a way that is reminiscent of that which has been described in vivo using sciatic nerve grafts after sectioning of the optic nerve. The molecular nature of these components is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Neuroscience Wiley

Survival and Axonal Elongation of Adult Rat Retinal Ganglion Cells

Loading next page...
 
/lp/wiley/survival-and-axonal-elongation-of-adult-rat-retinal-ganglion-cells-GhpAuBVzAw
Publisher
Wiley
Copyright
Copyright © 1989 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0953-816X
eISSN
1460-9568
DOI
10.1111/j.1460-9568.1989.tb00770.x
Publisher site
See Article on Publisher Site

Abstract

A peripheral nerve exudate, collected in situ from the proximal end of a severed rat sciatic nerve, can induce substantial axonal elongation from ganglion cells when tested on explanted adult rat retinae. The responsive cells are identified on the basis of their Thy 1.1 immunostaining properties. Similar outgrowth can be obtained from explants when the culture medium is supplemented with brain‐derived neurotrophic factor (BDNF). In addition, both BDNF and the sciatic nerve exudate can prevent ganglion cell degeneration as shown by the retrograde transport of a fluorescent dye that had been applied to the superior colliculus prior to explantation. The results demonstrate that soluble components, released by lesioned peripheral nerves, can effect adult retinal ganglion cells in a way that is reminiscent of that which has been described in vivo using sciatic nerve grafts after sectioning of the optic nerve. The molecular nature of these components is discussed.

Journal

European Journal of NeuroscienceWiley

Published: Jan 1, 1989

References

  • In vitro regeneration of adult rat ganglion cell axons from retinal explants
    Bähr, Bähr; Vanselow, Vanselow; Thanos, Thanos
  • Adult retinal ganglion cells retain the ability to regenerate their axons up to several weeks after axotomy
    Thanos, Thanos; Vanselow, Vanselow

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off