Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data

Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based... A distributed physically based model incorporating novel approaches for the representation of surface‐subsurface processes and interactions is presented. A path‐based description of surface flow across the drainage basin is used, with several options for identifying flow directions, for separating channel cells from hillslope cells, and for representing stream channel hydraulic geometry. Lakes and other topographic depressions are identified and specially treated as part of the preprocessing procedures applied to the digital elevation data for the catchment. Threshold‐based boundary condition switching is used to partition potential (atmospheric) fluxes into actual fluxes across the land surface and changes in surface storage, thus resolving the exchange fluxes, or coupling, between the surface and subsurface modules. Nested time stepping allows smaller steps to be taken for typically faster and explicitly solved surface runoff routing, while a mesh coarsening option allows larger grid elements to be used for typically slower and more compute‐intensive subsurface flow. Sequential data assimilation schemes allow the model predictions to be updated with spatiotemporal observation data of surface and subsurface variables. These approaches are discussed in detail, and the physical and numerical behavior of the model is illustrated over catchment scales ranging from 0.0027 to 356 km2, addressing different hydrological processes and highlighting the importance of describing coupled surface‐subsurface flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data

Loading next page...
 
/lp/wiley/surface-subsurface-flow-modeling-with-path-based-runoff-routing-AnonnbrhMc
Publisher
Wiley
Copyright
Copyright © 2010 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/2008WR007536
Publisher site
See Article on Publisher Site

Abstract

A distributed physically based model incorporating novel approaches for the representation of surface‐subsurface processes and interactions is presented. A path‐based description of surface flow across the drainage basin is used, with several options for identifying flow directions, for separating channel cells from hillslope cells, and for representing stream channel hydraulic geometry. Lakes and other topographic depressions are identified and specially treated as part of the preprocessing procedures applied to the digital elevation data for the catchment. Threshold‐based boundary condition switching is used to partition potential (atmospheric) fluxes into actual fluxes across the land surface and changes in surface storage, thus resolving the exchange fluxes, or coupling, between the surface and subsurface modules. Nested time stepping allows smaller steps to be taken for typically faster and explicitly solved surface runoff routing, while a mesh coarsening option allows larger grid elements to be used for typically slower and more compute‐intensive subsurface flow. Sequential data assimilation schemes allow the model predictions to be updated with spatiotemporal observation data of surface and subsurface variables. These approaches are discussed in detail, and the physical and numerical behavior of the model is illustrated over catchment scales ranging from 0.0027 to 356 km2, addressing different hydrological processes and highlighting the importance of describing coupled surface‐subsurface flow.

Journal

Water Resources ResearchWiley

Published: Feb 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off