Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant

Surface free energy characterization of vernix caseosa. Potential role in waterproofing the... Background/aims: Vernix caseosa is a proteolipid biofilm synthesized by the human fetus, which progressively covers the fetal skin surface during the last trimester of pregnancy. The exact physiological functions of vernix are unclear. Hypothetically, it serves a role in “waterproofing” the fetus during the critical period of epidermal barrier development before birth. Vernix may also play a role in adaptation of the fetal skin surface to the dry, cool extrauterine environment after birth. Given the strategic position of vernix on the fetal skin surface and the rapidly changing environment encountered by the skin at birth, we proposed that investigation of vernix surface characteristics would facilitate understanding its putative physiological roles. Methods: In this paper, we focused on the determination of the surface free energy (SFE) of vernix caseosa. Different approaches were used to calculate the SFE of vernix from contact angle (θ) measurements between vernix and various liquids (benzyl alcohol, diiodomethane, glycerol, and water). The critical surface tension (CST) of vernix was calculated using Zisman plots. The dispersive and the polar components of vernix SFE were calculated using the Owens–Wendt geometric mean method. Vernix was contrasted with petrolatum, a commonly used skin protectant. Results: CST of fresh vernix was 40.5 dyne/cm while that of petrolatum was 35.8 dyne/cm. Fresh vernix polar SFE was 1.5 dyne/cm while petrolatum had almost no polar SFE component (0.03 dyne/cm). For all liquids (except the nonpolar diiodomethane) there was a significant decrease in contact angle with time. Conclusions: The CST and the total SFE values suggest that vernix has very low surface energy and is highly unwettable. These findings are significant insofar as the main component in vernix is water, which is highly energetic. Although vernix has a very high water content, the major part of its SFE is hydrophobic (dispersive). The limited interaction between vernix and hydrophilic liquids supports the hypothesis that vernix acts as a natural protectant cream to “waterproof” the fetus in utero while submerged in the amniotic fluid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Skin Research and Technology Wiley

Surface free energy characterization of vernix caseosa. Potential role in waterproofing the newborn infant

Loading next page...
 
/lp/wiley/surface-free-energy-characterization-of-vernix-caseosa-potential-role-XWXSM4PJzL
Publisher
Wiley
Copyright
Copyright © 2001 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0909-752X
eISSN
1600-0846
DOI
10.1034/j.1600-0846.2001.007001010.x
Publisher site
See Article on Publisher Site

Abstract

Background/aims: Vernix caseosa is a proteolipid biofilm synthesized by the human fetus, which progressively covers the fetal skin surface during the last trimester of pregnancy. The exact physiological functions of vernix are unclear. Hypothetically, it serves a role in “waterproofing” the fetus during the critical period of epidermal barrier development before birth. Vernix may also play a role in adaptation of the fetal skin surface to the dry, cool extrauterine environment after birth. Given the strategic position of vernix on the fetal skin surface and the rapidly changing environment encountered by the skin at birth, we proposed that investigation of vernix surface characteristics would facilitate understanding its putative physiological roles. Methods: In this paper, we focused on the determination of the surface free energy (SFE) of vernix caseosa. Different approaches were used to calculate the SFE of vernix from contact angle (θ) measurements between vernix and various liquids (benzyl alcohol, diiodomethane, glycerol, and water). The critical surface tension (CST) of vernix was calculated using Zisman plots. The dispersive and the polar components of vernix SFE were calculated using the Owens–Wendt geometric mean method. Vernix was contrasted with petrolatum, a commonly used skin protectant. Results: CST of fresh vernix was 40.5 dyne/cm while that of petrolatum was 35.8 dyne/cm. Fresh vernix polar SFE was 1.5 dyne/cm while petrolatum had almost no polar SFE component (0.03 dyne/cm). For all liquids (except the nonpolar diiodomethane) there was a significant decrease in contact angle with time. Conclusions: The CST and the total SFE values suggest that vernix has very low surface energy and is highly unwettable. These findings are significant insofar as the main component in vernix is water, which is highly energetic. Although vernix has a very high water content, the major part of its SFE is hydrophobic (dispersive). The limited interaction between vernix and hydrophilic liquids supports the hypothesis that vernix acts as a natural protectant cream to “waterproof” the fetus in utero while submerged in the amniotic fluid.

Journal

Skin Research and TechnologyWiley

Published: Feb 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off