Sun‐Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements

Sun‐Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean... Recent development of sun‐induced chlorophyll fluorescence (SIF) technology is stimulating studies to remotely approximate canopy photosynthesis (measured as gross primary production, GPP). While multiple applications have advanced the empirical relationship between GPP and SIF, mechanistic understanding of this relationship is still limited. GPP:SIF relationship, using the standard light use efficiency framework, is determined by absorbed photosynthetically active radiation (APAR) and the relationship between photosynthetic light use efficiency (LUE) and fluorescence yield (SIFy). While previous studies have found that APAR is the dominant factor of the GPP:SIF relationship, the LUE:SIFy relationship remains unclear. For a better understanding of the LUE:SIFy relationship, we deployed a ground‐based system (FluoSpec2), with an eddy‐covariance flux tower at a soybean field in the Midwestern U.S. during the 2016 growing season to collect SIF and GPP data simultaneously. With the measurements categorized by plant growth stages, light conditions, and time scales, we confirmed that a strong positive GPP:SIF relationship was dominated by an even stronger linear SIF:APAR relationship. By normalizing both GPP and SIF by APAR, we found that under sunny conditions our soybean field exhibited a clear positive SIFy:APAR relationship and a weak negative LUE:SIFy relationship, opposite to the positive LUE:SIFy relationship reported previously in other ecosystems. Our study provides a first continuous SIF record over multiple growth stages for agricultural systems and reveals a distinctive pattern related to the LUE:SIFy relationship compared with previous work. The observed positive relationship of SIFy:APAR at the soybean site provides new insights of the previous understanding on the SIF's physiological implications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Biogeosciences Wiley

Sun‐Induced Chlorophyll Fluorescence, Photosynthesis, and Light Use Efficiency of a Soybean Field from Seasonally Continuous Measurements

Loading next page...
 
/lp/wiley/sun-induced-chlorophyll-fluorescence-photosynthesis-and-light-use-T2pD8xJdFZ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-8953
eISSN
2169-8961
D.O.I.
10.1002/2017JG004180
Publisher site
See Article on Publisher Site

Abstract

Recent development of sun‐induced chlorophyll fluorescence (SIF) technology is stimulating studies to remotely approximate canopy photosynthesis (measured as gross primary production, GPP). While multiple applications have advanced the empirical relationship between GPP and SIF, mechanistic understanding of this relationship is still limited. GPP:SIF relationship, using the standard light use efficiency framework, is determined by absorbed photosynthetically active radiation (APAR) and the relationship between photosynthetic light use efficiency (LUE) and fluorescence yield (SIFy). While previous studies have found that APAR is the dominant factor of the GPP:SIF relationship, the LUE:SIFy relationship remains unclear. For a better understanding of the LUE:SIFy relationship, we deployed a ground‐based system (FluoSpec2), with an eddy‐covariance flux tower at a soybean field in the Midwestern U.S. during the 2016 growing season to collect SIF and GPP data simultaneously. With the measurements categorized by plant growth stages, light conditions, and time scales, we confirmed that a strong positive GPP:SIF relationship was dominated by an even stronger linear SIF:APAR relationship. By normalizing both GPP and SIF by APAR, we found that under sunny conditions our soybean field exhibited a clear positive SIFy:APAR relationship and a weak negative LUE:SIFy relationship, opposite to the positive LUE:SIFy relationship reported previously in other ecosystems. Our study provides a first continuous SIF record over multiple growth stages for agricultural systems and reveals a distinctive pattern related to the LUE:SIFy relationship compared with previous work. The observed positive relationship of SIFy:APAR at the soybean site provides new insights of the previous understanding on the SIF's physiological implications.

Journal

Journal of Geophysical Research: BiogeosciencesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off