Successional response of a tropical forest termite assemblage to experimental habitat perturbation

Successional response of a tropical forest termite assemblage to experimental habitat perturbation Summary 1. Research into the successional responses of tropical forest communities following disturbance has potential applications for habitat restoration. Currently little is known of how these responses relate to the recovery of biodiversity and ecosystem processes. Succession of assemblages of decomposer arthropods is essential for the recovery of the soil community and nutrient cycling processes. 2. This study investigated the successional response of a termite assemblage to the experimental perturbation of forest habitat in southern Cameroon, examining the implications for tropical forest restoration. A randomized block design consisting of four experimental perturbations of differing severity was established in an old secondary forest in the Mbalmayo Forest Reserve. Isolated control sites were left in undisturbed forest. Recovery of the termite assemblage was assessed by measuring termite species richness and abundance at regular intervals over the subsequent 12 months. 3. The speed of recovery of the termite assemblage varied with the type and extent of perturbation. In treatments involving severe soil and canopy disturbance, termite species richness and abundance recovered more rapidly when dead wood was left on the ground following perturbation. The availability of dead wood also resulted in recolonization by a subset of the termite assemblage that was distinct compositionally from that sampled from all other treatments. This subset at sites with additional dead wood included not only certain wood‐feeding species, but also soil feeders. 4. The positive effects upon the termite assemblage of leaving substantial dead wood on the ground has implications for the restoration of tropical forests following human‐induced disturbances such as logging. The accelerated recovery of termite diversity and assemblage composition is a significant component of soil community recovery and the restoration of nutrient cycles. These benefits are expected to influence soil fertility and, ultimately, forest regeneration. The duration and persistence of these effects will depend crucially on the type, scale and intensity of the original disturbance. The impact of termites on soil properties, and vice versa, clearly deserves more attention in studies of tropical forest regeneration and recovery. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Successional response of a tropical forest termite assemblage to experimental habitat perturbation

Loading next page...
 
/lp/wiley/successional-response-of-a-tropical-forest-termite-assemblage-to-9BatmnhNgg
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
D.O.I.
10.1046/j.1365-2664.1999.00450.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1. Research into the successional responses of tropical forest communities following disturbance has potential applications for habitat restoration. Currently little is known of how these responses relate to the recovery of biodiversity and ecosystem processes. Succession of assemblages of decomposer arthropods is essential for the recovery of the soil community and nutrient cycling processes. 2. This study investigated the successional response of a termite assemblage to the experimental perturbation of forest habitat in southern Cameroon, examining the implications for tropical forest restoration. A randomized block design consisting of four experimental perturbations of differing severity was established in an old secondary forest in the Mbalmayo Forest Reserve. Isolated control sites were left in undisturbed forest. Recovery of the termite assemblage was assessed by measuring termite species richness and abundance at regular intervals over the subsequent 12 months. 3. The speed of recovery of the termite assemblage varied with the type and extent of perturbation. In treatments involving severe soil and canopy disturbance, termite species richness and abundance recovered more rapidly when dead wood was left on the ground following perturbation. The availability of dead wood also resulted in recolonization by a subset of the termite assemblage that was distinct compositionally from that sampled from all other treatments. This subset at sites with additional dead wood included not only certain wood‐feeding species, but also soil feeders. 4. The positive effects upon the termite assemblage of leaving substantial dead wood on the ground has implications for the restoration of tropical forests following human‐induced disturbances such as logging. The accelerated recovery of termite diversity and assemblage composition is a significant component of soil community recovery and the restoration of nutrient cycles. These benefits are expected to influence soil fertility and, ultimately, forest regeneration. The duration and persistence of these effects will depend crucially on the type, scale and intensity of the original disturbance. The impact of termites on soil properties, and vice versa, clearly deserves more attention in studies of tropical forest regeneration and recovery.

Journal

Journal of Applied EcologyWiley

Published: Dec 1, 1999

References

  • Insect diversity – facts, fiction and speculation.
    Stork, Stork

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off