Subsurface investigation of the surface modification of polydimethylsiloxane by 172‐nm vacuum ultraviolet irradiation using ToF‐SIMS and VUV spectrometry

Subsurface investigation of the surface modification of polydimethylsiloxane by 172‐nm vacuum... We investigate the mechanism of polydimethylsiloxane (PDMS) surface modification by 172‐nm vacuum ultraviolet (VUV) light. Time‐of‐flight secondary ion mass spectrometry and optical spectrometry are used to measure the chemical composition and VUV transmittance of the PDMS before and after surface modification, respectively. For modified samples of bulk PDMS, the VUV transmittance and the depth of the modified region increased with increasing VUV dose. This can be explained by the following self‐reinforcing cycle of (1) modification of PDMS by VUV light to a more silica‐like composition, (2) improvement of the VUV light transparency, and (3) deeper modification. For thin‐film samples of PDMS formed on sapphire substrates, the transmittance at 172 nm also increased with increasing VUV dose and exceeded that of sapphire in the region from 172 to 300 nm. Finally, thin‐film samples of PDMS formed on silicon substrates, which function as a VUV reflector, were also investigated. For these samples, the secondary ion depth profiles for several chemical species in the PDMS were oscillatory, probably due to the interference of the incident and reflected VUV light. These results strongly suggest that the photon energy of the VUV light plays an important role in modifying PDMS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Surface and Interface Analysis Wiley

Subsurface investigation of the surface modification of polydimethylsiloxane by 172‐nm vacuum ultraviolet irradiation using ToF‐SIMS and VUV spectrometry

Loading next page...
 
/lp/wiley/subsurface-investigation-of-the-surface-modification-of-WYOgkXf3ue
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0142-2421
eISSN
1096-9918
D.O.I.
10.1002/sia.6471
Publisher site
See Article on Publisher Site

Abstract

We investigate the mechanism of polydimethylsiloxane (PDMS) surface modification by 172‐nm vacuum ultraviolet (VUV) light. Time‐of‐flight secondary ion mass spectrometry and optical spectrometry are used to measure the chemical composition and VUV transmittance of the PDMS before and after surface modification, respectively. For modified samples of bulk PDMS, the VUV transmittance and the depth of the modified region increased with increasing VUV dose. This can be explained by the following self‐reinforcing cycle of (1) modification of PDMS by VUV light to a more silica‐like composition, (2) improvement of the VUV light transparency, and (3) deeper modification. For thin‐film samples of PDMS formed on sapphire substrates, the transmittance at 172 nm also increased with increasing VUV dose and exceeded that of sapphire in the region from 172 to 300 nm. Finally, thin‐film samples of PDMS formed on silicon substrates, which function as a VUV reflector, were also investigated. For these samples, the secondary ion depth profiles for several chemical species in the PDMS were oscillatory, probably due to the interference of the incident and reflected VUV light. These results strongly suggest that the photon energy of the VUV light plays an important role in modifying PDMS.

Journal

Surface and Interface AnalysisWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off