Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dealloying is a powerful technology to fabricate nanoporous materials with tunable structures and compositions for battery applications. Meanwhile, electrochemical dealloying is an intrinsic process for metal anodes that exhibits fundamental correlations with electrode morphologies and structures. In this work, Li‐Ag composites are fabricated as a case study to understand the spontaneous structural evolution and the in situ formation of nanoporosity during a reversible lithiation/delithiation process. The rationally designed nanoporous AgLi (NPAgLi) framework with limited Li capacity (10 mAh cm−2) enables a dendrite‐free anode with marginal volume variation upon long‐term cycling, which can be attributed to the spatially confined reaction pattern along with efficient Li alloying/dealloying. Furthermore, full cell tests reveal the NPAgLi anode remains stable under practical conditions such as lean electrolyte (15 µL), large areal capacity (1.6 mAh cm−2), and high‐loading cathode (12 mg cm−2). This work provides new perspectives on the in situ structural evolution of Li‐rich alloy electrodes and the results are expected to contribute to the development of alkali metal anodes.
Advanced Energy Materials – Wiley
Published: Feb 1, 2021
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.