# Statistical Properties of Stream Lengths

Statistical Properties of Stream Lengths Two basic assumptions are employed in this treatment of the statistics of stream lengths: (1) All topologically distinct networks with a given number of sources are equally likely (after Shreve). (2) Lengths of interior links in a given network are independent random variables drawn from the same population. The mathematical development leads to an approximate expression for L¯ω that contains no adjustable parameters and that depends only on the stream numbers and the mean link length. This expression gives somewhat better agreement with data on actual stream systems than does Horton's law of stream lengths; other advantages over Horton's law are cited. Quantitatively, our procedure appears to account for about 65% of the variance in mean stream length data for third‐ and fourth‐order basins. If exact values of the link numbers are introduced into the calculation, the unexplained variance is reduced to about 15%. For a complete statistical description of stream lengths, it is necessary to know the distribution of interior link lengths. Results of computer simulation studies suggest that this distribution is negative exponential. Data taken on two small watersheds (140 links) show reasonable agreement with this hypothesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

# Statistical Properties of Stream Lengths

Water Resources Research, Volume 4 (5) – Oct 1, 1968
14 pages

Loading next page...

/lp/wiley/statistical-properties-of-stream-lengths-ogSikPFsH3
Publisher
Wiley
Copyright
© 1968 by the Chinese Geophysical Society
ISSN
0043-1397
eISSN
1944-7973
DOI
10.1029/WR004i005p01001
Publisher site
See Article on Publisher Site

### Abstract

Two basic assumptions are employed in this treatment of the statistics of stream lengths: (1) All topologically distinct networks with a given number of sources are equally likely (after Shreve). (2) Lengths of interior links in a given network are independent random variables drawn from the same population. The mathematical development leads to an approximate expression for L¯ω that contains no adjustable parameters and that depends only on the stream numbers and the mean link length. This expression gives somewhat better agreement with data on actual stream systems than does Horton's law of stream lengths; other advantages over Horton's law are cited. Quantitatively, our procedure appears to account for about 65% of the variance in mean stream length data for third‐ and fourth‐order basins. If exact values of the link numbers are introduced into the calculation, the unexplained variance is reduced to about 15%. For a complete statistical description of stream lengths, it is necessary to know the distribution of interior link lengths. Results of computer simulation studies suggest that this distribution is negative exponential. Data taken on two small watersheds (140 links) show reasonable agreement with this hypothesis.

### Journal

Water Resources ResearchWiley

Published: Oct 1, 1968

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off