Statistical optimization and modeling approach for azo dye decolorization: Combined effects of ultrasound waves and nanomaterial‐based adsorbent

Statistical optimization and modeling approach for azo dye decolorization: Combined effects of... This study is devoted to an investigation of the effects of sonication time, adsorbent mass, pH and sunset yellow (SY) and disulfine blue (DB) concentration on the removal of DB and SY from water. Artificial neural network and response surface methodology approaches were used to optimize an analytical model to calculate the DB and SY removal performance of tin oxide nanoparticles loaded on activated carbon. The performance of both models was statistically evaluated in terms of the coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE) and absolute average deviation (AAD), and graphical plots were also used for comparison of the models. The obtained results show that the artificial neural network model outperforms the classical statistical model in terms of R2, RMSE, MAE and AAD for both dyes. Various isotherm models were studied for fitting the experimental equilibrium data, and the results confirm the applicability of the Langmuir isotherm for description of the adsorption equilibrium. Various kinetic models were applied to the experimental data and the results reveal that the pseudo‐second‐order model with better correlation is superior to the other kinetic models. The significant factors were optimized using the desirability function approach combined with central composite design. The obtained optimal point is located in the valid region and the experimental confirmation indicates good agreement between the predicted optimal points and the experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Statistical optimization and modeling approach for azo dye decolorization: Combined effects of ultrasound waves and nanomaterial‐based adsorbent

Loading next page...
 
/lp/wiley/statistical-optimization-and-modeling-approach-for-azo-dye-tKcyfHGrRm
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4205
Publisher site
See Article on Publisher Site

Abstract

This study is devoted to an investigation of the effects of sonication time, adsorbent mass, pH and sunset yellow (SY) and disulfine blue (DB) concentration on the removal of DB and SY from water. Artificial neural network and response surface methodology approaches were used to optimize an analytical model to calculate the DB and SY removal performance of tin oxide nanoparticles loaded on activated carbon. The performance of both models was statistically evaluated in terms of the coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE) and absolute average deviation (AAD), and graphical plots were also used for comparison of the models. The obtained results show that the artificial neural network model outperforms the classical statistical model in terms of R2, RMSE, MAE and AAD for both dyes. Various isotherm models were studied for fitting the experimental equilibrium data, and the results confirm the applicability of the Langmuir isotherm for description of the adsorption equilibrium. Various kinetic models were applied to the experimental data and the results reveal that the pseudo‐second‐order model with better correlation is superior to the other kinetic models. The significant factors were optimized using the desirability function approach combined with central composite design. The obtained optimal point is located in the valid region and the experimental confirmation indicates good agreement between the predicted optimal points and the experimental data.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off