Stability of single‐wavelength optical buffers

Stability of single‐wavelength optical buffers Optical burst switching (OBS) provides a future‐proof alternative to the current electronic switching in the backbone, but has buffering implemented with a set of fiber delay lines (FDLs). The resulting buffering system fundamentally differs from a classic one, in that the set of possible waiting times is not a continuum (like in the classic case) but rather a denumerable set, each value corresponding to the length of a delay line. As a result, arriving bursts in general have to wait longer than they would in a classic buffer, since their waiting time has to be in that denumerable set. The additional delay results in overall longer waiting times, when compared to a classic infinite buffer system with a continuous waiting room. While previous work already focused on the performance evaluation of finite optical buffers, the stability problem of the infinite system received only little attention. This contribution is the first to present a complete proof of sufficient stability conditions in the case of a general infinite FDL set, general arrival process and general service times. The key elements of analysis is the exploiting of the regenerative property of the waiting‐time process and a characterisation of the limiting forward renewal time process. The given bound on the traffic load guarantees stability for a wide class of GI/G/1 optical buffers, and poses no restriction on the FDL lengths. Copyright © 2009 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Transactions on Emerging Telecommunications Technologies (Electronic) Wiley

Stability of single‐wavelength optical buffers

Loading next page...
 
/lp/wiley/stability-of-single-wavelength-optical-buffers-mqsjJPaYt3
Publisher
Wiley
Copyright
Copyright © 2009 John Wiley & Sons, Ltd.
ISSN
1124-318X
eISSN
2161-3915
D.O.I.
10.1002/ett.1378
Publisher site
See Article on Publisher Site

Abstract

Optical burst switching (OBS) provides a future‐proof alternative to the current electronic switching in the backbone, but has buffering implemented with a set of fiber delay lines (FDLs). The resulting buffering system fundamentally differs from a classic one, in that the set of possible waiting times is not a continuum (like in the classic case) but rather a denumerable set, each value corresponding to the length of a delay line. As a result, arriving bursts in general have to wait longer than they would in a classic buffer, since their waiting time has to be in that denumerable set. The additional delay results in overall longer waiting times, when compared to a classic infinite buffer system with a continuous waiting room. While previous work already focused on the performance evaluation of finite optical buffers, the stability problem of the infinite system received only little attention. This contribution is the first to present a complete proof of sufficient stability conditions in the case of a general infinite FDL set, general arrival process and general service times. The key elements of analysis is the exploiting of the regenerative property of the waiting‐time process and a characterisation of the limiting forward renewal time process. The given bound on the traffic load guarantees stability for a wide class of GI/G/1 optical buffers, and poses no restriction on the FDL lengths. Copyright © 2009 John Wiley & Sons, Ltd.

Journal

Transactions on Emerging Telecommunications Technologies (Electronic)Wiley

Published: Apr 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off