Spectral Analysis of Large Scale Structures in Fully Developed Turbulent Pipe Flow

Spectral Analysis of Large Scale Structures in Fully Developed Turbulent Pipe Flow The present work focuses on spectral analysis of the streamwise velocity fluctuations obtained, utilizing the Cottbus Large Pipe (CoLaPipe) test facility for R+ ≤ 3500, where R+ is the Reynolds number based on the wall friction velocity, uτ, and the pipe radius, R. Measurements of the streamwise spectra have been conducted using a single hot‐wire probe. Few runs have been also performed using Particle Image Velocimetry (PIV) as a structure visualization evidence and for spatial correlation purposes. The spectral analysis is being carried out to reveal few insights into pipe flow structure, allowing to follow the foot prints of such structures as well as providing estimates of their energy contents. The cumulative energy is examined as a function of the streamwise wavelength, describing the most energetic motions found in spectral data at various wall normal locations. For the current Reynolds number range, the Very Large Scale Motions (VLSM) and the Large Scale Motions (LSM) were evident as localized peaks in pre‐multiplied spectra, having mean wavelengths approximately of 12R, and 3R, respectively. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Spectral Analysis of Large Scale Structures in Fully Developed Turbulent Pipe Flow

Loading next page...
 
/lp/wiley/spectral-analysis-of-large-scale-structures-in-fully-developed-I5f4X674Ig
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710293
Publisher site
See Article on Publisher Site

Abstract

The present work focuses on spectral analysis of the streamwise velocity fluctuations obtained, utilizing the Cottbus Large Pipe (CoLaPipe) test facility for R+ ≤ 3500, where R+ is the Reynolds number based on the wall friction velocity, uτ, and the pipe radius, R. Measurements of the streamwise spectra have been conducted using a single hot‐wire probe. Few runs have been also performed using Particle Image Velocimetry (PIV) as a structure visualization evidence and for spatial correlation purposes. The spectral analysis is being carried out to reveal few insights into pipe flow structure, allowing to follow the foot prints of such structures as well as providing estimates of their energy contents. The cumulative energy is examined as a function of the streamwise wavelength, describing the most energetic motions found in spectral data at various wall normal locations. For the current Reynolds number range, the Very Large Scale Motions (VLSM) and the Large Scale Motions (LSM) were evident as localized peaks in pre‐multiplied spectra, having mean wavelengths approximately of 12R, and 3R, respectively. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off