Species richness along multiple gradients: testing a general multivariate model in oak savannas

Species richness along multiple gradients: testing a general multivariate model in oak savannas A confirmatory structural equation model was built in order to test the generality of Grace and Pugesek's model of species richness. A main feature of their model was that light reaching the soil surface had the strongest effects on species richness, and that disturbance and biomass effects were largely indirect via effects on light. Their model was not confirmed for the understory vegetation of floodplain oak savannas and a new model had numerous fundamental differences. Disturbance history had the strongest direct effects on richness and these were independent of biomass effects. Richness was maximal at intermediate disturbance and biomass. Bivariate relationships between soil quality and species density were very weak because soil quality simultaneously had negative direct effects and positive indirect effects (through biomass), such that the total effect of soil was negligible. This provides an example of how structural modeling can provide insights that are not possible with other numerical methods. The complex effects of soils support recent findings that some soil components tend to increase richness via a species pool effect while other components tend to reduce richness via biotic interactions. The effects of light were not significant, but canopy trees had weak, positive effects, and this contradicts other structural models which have generally shown that shading reduces species richness. Here, species richness increases with shade presumably because of species pool effects, whereby the species pool increases by including prairie, savanna, and some woodland species and indirectly by reducing dominance by warm‐season grasses. The results have implications for management because of the overall importance of disturbance history, however the majority of the variation in richness was left unexplained and this suggests other factors such as dispersal limitation, soil fungi, and historical effects may be of overriding importance in these oak savannas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oikos Wiley

Species richness along multiple gradients: testing a general multivariate model in oak savannas

Oikos, Volume 101 (2) – May 1, 2003

Loading next page...
 
/lp/wiley/species-richness-along-multiple-gradients-testing-a-general-JOjWbgOOzC
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0030-1299
eISSN
1600-0706
DOI
10.1034/j.1600-0706.2003.12216.x
Publisher site
See Article on Publisher Site

Abstract

A confirmatory structural equation model was built in order to test the generality of Grace and Pugesek's model of species richness. A main feature of their model was that light reaching the soil surface had the strongest effects on species richness, and that disturbance and biomass effects were largely indirect via effects on light. Their model was not confirmed for the understory vegetation of floodplain oak savannas and a new model had numerous fundamental differences. Disturbance history had the strongest direct effects on richness and these were independent of biomass effects. Richness was maximal at intermediate disturbance and biomass. Bivariate relationships between soil quality and species density were very weak because soil quality simultaneously had negative direct effects and positive indirect effects (through biomass), such that the total effect of soil was negligible. This provides an example of how structural modeling can provide insights that are not possible with other numerical methods. The complex effects of soils support recent findings that some soil components tend to increase richness via a species pool effect while other components tend to reduce richness via biotic interactions. The effects of light were not significant, but canopy trees had weak, positive effects, and this contradicts other structural models which have generally shown that shading reduces species richness. Here, species richness increases with shade presumably because of species pool effects, whereby the species pool increases by including prairie, savanna, and some woodland species and indirectly by reducing dominance by warm‐season grasses. The results have implications for management because of the overall importance of disturbance history, however the majority of the variation in richness was left unexplained and this suggests other factors such as dispersal limitation, soil fungi, and historical effects may be of overriding importance in these oak savannas.

Journal

OikosWiley

Published: May 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off