Species response curves along environmental gradients. A case study from SE Norwegian swamp forests

Species response curves along environmental gradients. A case study from SE Norwegian swamp forests Abstract. Vegetation science has relied on untested paradigms relating to the shape of species response curves along environmental gradients. To advance in this field, we used the HOF approach to model response curves for 112 plant species along six environmental gradients and three ecoclines (as represented by DCA ordination axes) in SE Norwegian swamp forests. Response curve properties were summarized in three binary response variables: (1) model unimodal or monotonous (determinate) vs. indeterminate; (2) for determinate models, unimodal vs. monotonous and (3) for unimodal models, skewed vs. symmetric. We used logistic regression to test the influence, singly and jointly, of seven predictor variables on each of three response variables. Predictor variables included gradient type (environmental or ecocline) and length (compositional turnover); species category (vascular plant, moss, Sphagnum or hepatic), species frequency and richness, tolerance (the fraction of the gradient along which the species occurs) and position of species along each gradient. The probability for fitting a determinate model increased as the main occurrence of species approached gradient extremes and with increasing species tolerance and frequency and gradient length. Appearance of unimodal models was favoured by low species tolerance and disfavoured by closeness of species to gradient extremes. Appearance of skewed models was weakly related to predictors but was slightly favoured by species optima near gradient extremes. Contrary to the results of previous studies, species category, gradient type and variation in species richness along gradients did not contribute independently to model prediction. The overall best predictors of response curve shape were position along the gradient (relative to extremes) and tolerance; the latter also expressing gradient length in units of compositional turnover. This helps predicting species responses to gradients from gradient specific species properties. The low proportion of skewed response curves and the large variation of species response curves along all gradients indicate that skewed response curves is a smaller problem for the performance of ordination methods than often claimed. We find no evidence that DCA ordination increases the unimodality, or symmetry, of species response curves more than expected from the higher compositional turnover along ordination axes. Thus ordination axes may be appropriate proxies for ecoclines, applicable for use in species response modelling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Vegetation Science Wiley

Species response curves along environmental gradients. A case study from SE Norwegian swamp forests

Loading next page...
 
/lp/wiley/species-response-curves-along-environmental-gradients-a-case-study-oXQaPd07Zq
Publisher
Wiley
Copyright
2003 IAVS ‐ the International Association of Vegetation Science
ISSN
1100-9233
eISSN
1654-1103
DOI
10.1111/j.1654-1103.2003.tb02220.x
Publisher site
See Article on Publisher Site

Abstract

Abstract. Vegetation science has relied on untested paradigms relating to the shape of species response curves along environmental gradients. To advance in this field, we used the HOF approach to model response curves for 112 plant species along six environmental gradients and three ecoclines (as represented by DCA ordination axes) in SE Norwegian swamp forests. Response curve properties were summarized in three binary response variables: (1) model unimodal or monotonous (determinate) vs. indeterminate; (2) for determinate models, unimodal vs. monotonous and (3) for unimodal models, skewed vs. symmetric. We used logistic regression to test the influence, singly and jointly, of seven predictor variables on each of three response variables. Predictor variables included gradient type (environmental or ecocline) and length (compositional turnover); species category (vascular plant, moss, Sphagnum or hepatic), species frequency and richness, tolerance (the fraction of the gradient along which the species occurs) and position of species along each gradient. The probability for fitting a determinate model increased as the main occurrence of species approached gradient extremes and with increasing species tolerance and frequency and gradient length. Appearance of unimodal models was favoured by low species tolerance and disfavoured by closeness of species to gradient extremes. Appearance of skewed models was weakly related to predictors but was slightly favoured by species optima near gradient extremes. Contrary to the results of previous studies, species category, gradient type and variation in species richness along gradients did not contribute independently to model prediction. The overall best predictors of response curve shape were position along the gradient (relative to extremes) and tolerance; the latter also expressing gradient length in units of compositional turnover. This helps predicting species responses to gradients from gradient specific species properties. The low proportion of skewed response curves and the large variation of species response curves along all gradients indicate that skewed response curves is a smaller problem for the performance of ordination methods than often claimed. We find no evidence that DCA ordination increases the unimodality, or symmetry, of species response curves more than expected from the higher compositional turnover along ordination axes. Thus ordination axes may be appropriate proxies for ecoclines, applicable for use in species response modelling.

Journal

Journal of Vegetation ScienceWiley

Published: Dec 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off