Spatially Distinct Seasonal Patterns and Forcings of the U.S. Warming Hole

Spatially Distinct Seasonal Patterns and Forcings of the U.S. Warming Hole We present a novel approach to characterize the spatiotemporal evolution of regional cooling across the eastern United States (commonly called the U.S. warming hole), by defining a spatially explicit boundary around the region of most persistent cooling. The warming hole emerges after a regime shift in 1958 where annual maximum (Tmax) and minimum (Tmin) temperatures decreased by 0.83°C and 0.46°C, respectively. The annual warming hole consists of two distinct seasonal modes, one located in the southeastern United States during winter and spring and the other in the midwestern United States during summer and autumn. A correlation analysis indicates that the seasonal modes differ in causation. Winter temperatures in the warming hole are significantly correlated with the Meridional Circulation Index, North Atlantic Oscillation, and Pacific Decadal Oscillation. However, the variability of ocean‐atmosphere circulation modes is insufficient to explain the summer temperature patterns of the warming hole. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Spatially Distinct Seasonal Patterns and Forcings of the U.S. Warming Hole

Loading next page...
 
/lp/wiley/spatially-distinct-seasonal-patterns-and-forcings-of-the-u-s-warming-EdERoJjXvr
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076463
Publisher site
See Article on Publisher Site

Abstract

We present a novel approach to characterize the spatiotemporal evolution of regional cooling across the eastern United States (commonly called the U.S. warming hole), by defining a spatially explicit boundary around the region of most persistent cooling. The warming hole emerges after a regime shift in 1958 where annual maximum (Tmax) and minimum (Tmin) temperatures decreased by 0.83°C and 0.46°C, respectively. The annual warming hole consists of two distinct seasonal modes, one located in the southeastern United States during winter and spring and the other in the midwestern United States during summer and autumn. A correlation analysis indicates that the seasonal modes differ in causation. Winter temperatures in the warming hole are significantly correlated with the Meridional Circulation Index, North Atlantic Oscillation, and Pacific Decadal Oscillation. However, the variability of ocean‐atmosphere circulation modes is insufficient to explain the summer temperature patterns of the warming hole.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off