Space‐Charge‐Stabilized Ferroelectric Polarization in Self‐Oriented Croconic Acid Films

Space‐Charge‐Stabilized Ferroelectric Polarization in Self‐Oriented Croconic Acid Films Great progress has been made recently in molecular ferroelectrics with properties even comparable to those of inorganic ferroelectrics. However, it is difficult to develop basic thin films and devices for practical applications since most molecular ferroelectrics are uniaxial. The single polar axes of crystallites inside their films, if available, are usually oriented randomly. These can induce the components without contribution to ferroelectric polarization and a large depolarization electric field to suppress polarization. In this work, it is demonstrated that uniaxial croconic acid films in two‐terminal devices, deposited by thermal evaporation, can show effective ferroelectric polarization and nonvolatile memory switching behavior with small coercive fields of 11–30 kV cm−1. The polar c‐axes in thick crystalline films (>500 nm) are found to be self‐oriented nearly at a desired direction. With the assistance of trapped charges, stable ferroelectric polarization can be achieved, in spite of the existence of nonferroelectric components. These may pave a way to utilize uniaxial molecular ferroelectrics for various applications, such as gate dielectrics, electrets, and memory devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Functional Materials Wiley

Space‐Charge‐Stabilized Ferroelectric Polarization in Self‐Oriented Croconic Acid Films

Loading next page...
 
/lp/wiley/space-charge-stabilized-ferroelectric-polarization-in-self-oriented-eXR1FAbf2z
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1616-301X
eISSN
1616-3028
D.O.I.
10.1002/adfm.201705463
Publisher site
See Article on Publisher Site

Abstract

Great progress has been made recently in molecular ferroelectrics with properties even comparable to those of inorganic ferroelectrics. However, it is difficult to develop basic thin films and devices for practical applications since most molecular ferroelectrics are uniaxial. The single polar axes of crystallites inside their films, if available, are usually oriented randomly. These can induce the components without contribution to ferroelectric polarization and a large depolarization electric field to suppress polarization. In this work, it is demonstrated that uniaxial croconic acid films in two‐terminal devices, deposited by thermal evaporation, can show effective ferroelectric polarization and nonvolatile memory switching behavior with small coercive fields of 11–30 kV cm−1. The polar c‐axes in thick crystalline films (>500 nm) are found to be self‐oriented nearly at a desired direction. With the assistance of trapped charges, stable ferroelectric polarization can be achieved, in spite of the existence of nonferroelectric components. These may pave a way to utilize uniaxial molecular ferroelectrics for various applications, such as gate dielectrics, electrets, and memory devices.

Journal

Advanced Functional MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off