Solving Models with Jump Discontinuities in Policy Functions

Solving Models with Jump Discontinuities in Policy Functions We compare global methods for solving models with jump discontinuities in the policy function. We find that differences between value function iteration (VFI) and other methods are economically significant and Euler equation errors fail to be a sufficient measure of accuracy in such models. VFI fails to accurately identify both the location and size of jump discontinuities, while the endogenous grid method (EGM) and the finite element method (FEM) are much better at approximating this class of models. We further show that combining VFI with a local interpolation step (VFI‐INT) is sufficient to obtain accurate approximations. The combination of computational speed, relatively easy implementation and adaptability make VFI‐INT especially suitable for approximating models with jump discontinuities in policy functions: while EGM is the fastest method, it is relatively complex to implement; implementation of VFI‐INT is relatively straightforward and it is much faster than FEM. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oxford Bulletin of Economics & Statistics Wiley

Solving Models with Jump Discontinuities in Policy Functions

Loading next page...
 
/lp/wiley/solving-models-with-jump-discontinuities-in-policy-functions-kOX180n5nH
Publisher
Wiley
Copyright
Copyright © 2018 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
ISSN
0305-9049
eISSN
1468-0084
D.O.I.
10.1111/obes.12203
Publisher site
See Article on Publisher Site

Abstract

We compare global methods for solving models with jump discontinuities in the policy function. We find that differences between value function iteration (VFI) and other methods are economically significant and Euler equation errors fail to be a sufficient measure of accuracy in such models. VFI fails to accurately identify both the location and size of jump discontinuities, while the endogenous grid method (EGM) and the finite element method (FEM) are much better at approximating this class of models. We further show that combining VFI with a local interpolation step (VFI‐INT) is sufficient to obtain accurate approximations. The combination of computational speed, relatively easy implementation and adaptability make VFI‐INT especially suitable for approximating models with jump discontinuities in policy functions: while EGM is the fastest method, it is relatively complex to implement; implementation of VFI‐INT is relatively straightforward and it is much faster than FEM.

Journal

Oxford Bulletin of Economics & StatisticsWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off