Access the full text.
Sign up today, get DeepDyve free for 14 days.
The search for lead‐free alternatives to lead‐halide perovskite photovoltaic materials resulted in the discovery of copper(I)‐silver(I)‐bismuth(III) halides exhibiting promising properties for optoelectronic applications. The present work demonstrates a solution‐based synthesis of uniform CuxAgBiI4+x thin films and scrutinizes the effects of x on the phase composition, dimensionality, optoelectronic properties, and photovoltaic performance. Formation of pure 3D CuAgBiI5 at x = 1, 2D Cu2AgBiI6 at x = 2, and a mix of the two at 1 < x < 2 is demonstrated. Despite lower structural dimensionality, Cu2AgBiI6 has broader optical absorption with a direct bandgap of 1.89 ± 0.05 eV, a valence band level at ‐5.25 eV, improved carrier lifetime, and higher recombination resistance as compared to CuAgBiI5. These differences are mirrored in the power conversion efficiencies of the CuAgBiI5 and Cu2AgBiI6 solar cells under 1 sun of 1.01 ± 0.06% and 2.39 ± 0.05%, respectively. The latter value is the highest reported for this class of materials owing to the favorable film morphology provided by the hot‐casting method. Future performance improvements might emerge from the optimization of the Cu2AgBiI6 layer thickness to match the carrier diffusion length of ≈40–50 nm. Nonencapsulated Cu2AgBiI6 solar cells display storage stability over 240 days.
Advanced Energy Materials – Wiley
Published: Aug 1, 2022
Keywords: CuAgBiI 5; Cu 2 AgBiI 6; solar cells; thin film
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.