Solar irradiation levels during simulated long‐ and short‐term heat waves significantly influence heat survival, pigment and ascorbate composition, and free radical scavenging activity in alpine Vaccinium gaultherioides

Solar irradiation levels during simulated long‐ and short‐term heat waves significantly... In the 20th century, annual mean temperatures in the European Alps rose by almost 1 K and are predicted to rise further, increasing the impact of temperature on alpine plants. The role of light in the heat hardening of plants is still not fully understood. Here, the alpine dwarf shrub Vaccinium gaultherioides was exposed in situ to controlled short‐term heat spells (150 min with leaf temperatures 43–49°C) and long‐term heat waves (7 days, 30°C) under different irradiation intensities. Lethal leaf temperatures (LT50) were calculated. Low solar irradiation [max. 250 photosynthetic photon flux density (PPFD)] during short‐term heat treatments mitigated the heat stress, shown by reduced leaf tissue damage and higher Fv/Fm (potential quantum efficiency of photosystem 2) than in darkness. The increase in xanthophyll cycle activity and ascorbate concentration was more pronounced under low light, and free radical scavenging activity increased independent of light conditions. During long‐term heat wave exposure, heat tolerance increased from 3.7 to 6.5°C with decreasing mean solar irradiation intensity (585–115 PPFD). Long‐term exposure to heat under low light enhanced heat hardening and increased photosynthetic pigment, dehydroascorbate and violaxanthin concentration. In conclusion, V. gaultherioides is able to withstand temperatures of around 50°C, and its heat hardening can be enhanced by low light during both short‐ and long‐term heat treatment. Data showing the specific role of light during short‐ and long‐term heat exposure and the potential risk of lethal damage in alpine shrubs as a result of rising temperature are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiologia Plantarum Wiley

Solar irradiation levels during simulated long‐ and short‐term heat waves significantly influence heat survival, pigment and ascorbate composition, and free radical scavenging activity in alpine Vaccinium gaultherioides

Loading next page...
 
/lp/wiley/solar-irradiation-levels-during-simulated-long-and-short-term-heat-3ZhptHBk4g
Publisher
Wiley
Copyright
© 2018 Scandinavian Plant Physiology Society
ISSN
0031-9317
eISSN
1399-3054
D.O.I.
10.1111/ppl.12686
Publisher site
See Article on Publisher Site

Abstract

In the 20th century, annual mean temperatures in the European Alps rose by almost 1 K and are predicted to rise further, increasing the impact of temperature on alpine plants. The role of light in the heat hardening of plants is still not fully understood. Here, the alpine dwarf shrub Vaccinium gaultherioides was exposed in situ to controlled short‐term heat spells (150 min with leaf temperatures 43–49°C) and long‐term heat waves (7 days, 30°C) under different irradiation intensities. Lethal leaf temperatures (LT50) were calculated. Low solar irradiation [max. 250 photosynthetic photon flux density (PPFD)] during short‐term heat treatments mitigated the heat stress, shown by reduced leaf tissue damage and higher Fv/Fm (potential quantum efficiency of photosystem 2) than in darkness. The increase in xanthophyll cycle activity and ascorbate concentration was more pronounced under low light, and free radical scavenging activity increased independent of light conditions. During long‐term heat wave exposure, heat tolerance increased from 3.7 to 6.5°C with decreasing mean solar irradiation intensity (585–115 PPFD). Long‐term exposure to heat under low light enhanced heat hardening and increased photosynthetic pigment, dehydroascorbate and violaxanthin concentration. In conclusion, V. gaultherioides is able to withstand temperatures of around 50°C, and its heat hardening can be enhanced by low light during both short‐ and long‐term heat treatment. Data showing the specific role of light during short‐ and long‐term heat exposure and the potential risk of lethal damage in alpine shrubs as a result of rising temperature are discussed.

Journal

Physiologia PlantarumWiley

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off