Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm

Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm Prediction of solar power involves the knowledge of the sun, atmosphere and other parameters, and the scattering processes and the specifications of a solar energy plant that employs the sun's energy to generate solar power. This prediction result is essential for an efficient use of the solar power plant, the management of the electricity grid, and solar energy trading. However, because of nonlinear and nonstationary behavior of solar power time series, an efficient forecasting model is needed to predict it. Accordingly, in this paper, we propose a new forecast approach based on combination of a neural network with a metaheuristic algorithm as the hybrid forecasting engine. The metaheuristic algorithm optimizes the free parameters of the neural network. This approach also includes a 2‐stage feature selection filter based on the information‐theoretic criteria of mutual information and interaction gain, which filters out the ineffective input features. To demonstrate the effectiveness of the proposed forecast approach, it is implemented on a real‐world engineering test case. Obtained results illustrate the superiority of the proposed approach in comparison with other prediction methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley

Solar energy forecasting based on hybrid neural network and improved metaheuristic algorithm

Loading next page...
 
/lp/wiley/solar-energy-forecasting-based-on-hybrid-neural-network-and-improved-jP0P589800
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12145
Publisher site
See Article on Publisher Site

Abstract

Prediction of solar power involves the knowledge of the sun, atmosphere and other parameters, and the scattering processes and the specifications of a solar energy plant that employs the sun's energy to generate solar power. This prediction result is essential for an efficient use of the solar power plant, the management of the electricity grid, and solar energy trading. However, because of nonlinear and nonstationary behavior of solar power time series, an efficient forecasting model is needed to predict it. Accordingly, in this paper, we propose a new forecast approach based on combination of a neural network with a metaheuristic algorithm as the hybrid forecasting engine. The metaheuristic algorithm optimizes the free parameters of the neural network. This approach also includes a 2‐stage feature selection filter based on the information‐theoretic criteria of mutual information and interaction gain, which filters out the ineffective input features. To demonstrate the effectiveness of the proposed forecast approach, it is implemented on a real‐world engineering test case. Obtained results illustrate the superiority of the proposed approach in comparison with other prediction methods.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off