Soil seal formation and its effect on infiltration: Uniform versus nonuniform seal approximation

Soil seal formation and its effect on infiltration: Uniform versus nonuniform seal approximation Two different approaches to the solution of the problem of flow through the dynamic stage of seal formation as well as through soil with a fully developed seal are studied. The first approach considers the disturbed seal layer and the undisturbed soil underneath as a continuous nonuniform soil profile. The second replaces the nonuniform seal by a uniform equivalent layer, thereby generating a homogeneous two‐layer flow system. The depth‐dependent properties of the nonuniform seal are expressed in terms of the exponential model of Mualem and Assouline (1989). The dynamics of seal formation are modeled according to Assouline and Mualem (1997). During the first rainfall on an undisturbed soil profile, when the seal layer is formed, the application of the first or the second approach has only a minor effect on the calculated infiltration curves. However, there is a significant difference between the two solutions regarding the dynamic changes of the water content in the soil surface and, consequently, within the seal layer. During subsequent rainfalls on a sealed soil profile, when the seal layer is completely developed, the differences between the two ways of accounting for the seal layer become evident, and their effects on the infiltration curve are much more significant. Representing the seal as an equivalent uniform layer increases the ponding time and the infiltration rates at the early stage of the process. The amplitude of these effects is increased when the rainfall rate is higher and the seal layer is thicker. An important result is that the relationship between infiltration rate and cumulative infiltration is unique in the case of a completely developed seal and when the seal is considered as a nonuniform layer. However, this relationship is not unique during seal formation, independent of the approach applied to represent the seal layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Soil seal formation and its effect on infiltration: Uniform versus nonuniform seal approximation

Water Resources Research, Volume 37 (2) – Feb 1, 2001

Loading next page...
 
/lp/wiley/soil-seal-formation-and-its-effect-on-infiltration-uniform-versus-94J0DuxmTP
Publisher
Wiley
Copyright
Copyright © 2001 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/2000WR900275
Publisher site
See Article on Publisher Site

Abstract

Two different approaches to the solution of the problem of flow through the dynamic stage of seal formation as well as through soil with a fully developed seal are studied. The first approach considers the disturbed seal layer and the undisturbed soil underneath as a continuous nonuniform soil profile. The second replaces the nonuniform seal by a uniform equivalent layer, thereby generating a homogeneous two‐layer flow system. The depth‐dependent properties of the nonuniform seal are expressed in terms of the exponential model of Mualem and Assouline (1989). The dynamics of seal formation are modeled according to Assouline and Mualem (1997). During the first rainfall on an undisturbed soil profile, when the seal layer is formed, the application of the first or the second approach has only a minor effect on the calculated infiltration curves. However, there is a significant difference between the two solutions regarding the dynamic changes of the water content in the soil surface and, consequently, within the seal layer. During subsequent rainfalls on a sealed soil profile, when the seal layer is completely developed, the differences between the two ways of accounting for the seal layer become evident, and their effects on the infiltration curve are much more significant. Representing the seal as an equivalent uniform layer increases the ponding time and the infiltration rates at the early stage of the process. The amplitude of these effects is increased when the rainfall rate is higher and the seal layer is thicker. An important result is that the relationship between infiltration rate and cumulative infiltration is unique in the case of a completely developed seal and when the seal is considered as a nonuniform layer. However, this relationship is not unique during seal formation, independent of the approach applied to represent the seal layer.

Journal

Water Resources ResearchWiley

Published: Feb 1, 2001

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off