Soil Moisture‐Temperature Coupling in a Set of Land Surface Models

Soil Moisture‐Temperature Coupling in a Set of Land Surface Models The land surface controls the partitioning of water and energy fluxes and therefore plays a crucial role in the climate system. The coupling between soil moisture and air temperature, in particular, has been shown to affect the severity and occurrence of temperature extremes and heat waves. Here we study soil moisture‐temperature coupling in five land surface models, focusing on the terrestrial segment of the coupling in the warm season. All models are run off‐line over a common period with identical atmospheric forcing data, in order to allow differences in the results to be attributed to the models' partitioning of energy and water fluxes. Coupling is calculated according to two semiempirical metrics, and results are compared to observational flux tower data. Results show that the locations of the global hot spots of soil moisture‐temperature coupling are similar across all models and for both metrics. In agreement with previous studies, these areas are located in transitional climate regimes. The magnitude and local patterns of model coupling, however, can vary considerably. Model coupling fields are compared to tower data, bearing in mind the limitations in the geographical distribution of flux towers and the differences in representative area of models and in situ data. Nevertheless, model coupling correlates in space with the tower‐based results (r = 0.5–0.7), with the multimodel mean performing similarly to the best‐performing model. Intermodel differences are also found in the evaporative fractions and may relate to errors in model parameterizations and ancillary data of soil and vegetation characteristics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Atmospheres Wiley

Soil Moisture‐Temperature Coupling in a Set of Land Surface Models

Loading next page...
 
/lp/wiley/soil-moisture-temperature-coupling-in-a-set-of-land-surface-models-Dsiz7UihSf
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-897X
eISSN
2169-8996
D.O.I.
10.1002/2017JD027346
Publisher site
See Article on Publisher Site

Abstract

The land surface controls the partitioning of water and energy fluxes and therefore plays a crucial role in the climate system. The coupling between soil moisture and air temperature, in particular, has been shown to affect the severity and occurrence of temperature extremes and heat waves. Here we study soil moisture‐temperature coupling in five land surface models, focusing on the terrestrial segment of the coupling in the warm season. All models are run off‐line over a common period with identical atmospheric forcing data, in order to allow differences in the results to be attributed to the models' partitioning of energy and water fluxes. Coupling is calculated according to two semiempirical metrics, and results are compared to observational flux tower data. Results show that the locations of the global hot spots of soil moisture‐temperature coupling are similar across all models and for both metrics. In agreement with previous studies, these areas are located in transitional climate regimes. The magnitude and local patterns of model coupling, however, can vary considerably. Model coupling fields are compared to tower data, bearing in mind the limitations in the geographical distribution of flux towers and the differences in representative area of models and in situ data. Nevertheless, model coupling correlates in space with the tower‐based results (r = 0.5–0.7), with the multimodel mean performing similarly to the best‐performing model. Intermodel differences are also found in the evaporative fractions and may relate to errors in model parameterizations and ancillary data of soil and vegetation characteristics.

Journal

Journal of Geophysical Research: AtmospheresWiley

Published: Jan 16, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off