Access the full text.
Sign up today, get DeepDyve free for 14 days.
The unfavorable morphology and inefficient utilization of phase transition reversibility have limited the high‐temperature‐processed inorganic perovskite films in both efficiency and stability. Here, a simple soft template‐controlled growth (STCG) method is reported by introducing (adamantan‐1‐yl)methanammonium to control the nucleation and growth rate of CsPbI3 crystals, which gives rise to pinhole‐free CsPbI3 film with a grain size on a micrometer scale. The STCG‐based CsPbI3 perovskite solar cell exhibits a power conversion efficiency of 16.04% with significantly reduced defect densities and charge recombination. More importantly, an all‐inorganic solar cell with the architecture fluorine‐doped tin oxide (FTO)/NiOx/STCG‐CsPbI3/ZnO/indium‐doped tin oxide (ITO) is successfully fabricated to demonstrate its real advantage in thermal stability. By suppressing the inductive effect of defects during the phase transition and utilizing the unique reversibility of the phase transition for the high‐temperature‐processed CsPbI3 film, the all‐inorganic solar cell retains 90% of its initial efficiency after 3000 h of continuous light soaking and heating.
Advanced Energy Materials – Wiley
Published: Mar 1, 2020
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.