Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion

Smoothing parameter selection in nonparametric regression using an improved Akaike information... Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoothing spline estimators. Each of these estimators uses a smoothing parameter to control the amount of smoothing performed on a given data set. In this paper an improved version of a criterion based on the Akaike information criterion (AIC), termed AICC, is derived and examined as a way to choose the smoothing parameter. Unlike plug‐in methods, AICC can be used to choose smoothing parameters for any linear smoother, including local quadratic and smoothing spline estimators. The use of AICC avoids the large variability and tendency to undersmooth (compared with the actual minimizer of average squared error) seen when other ‘classical’ approaches (such as generalized cross‐validation (GCV) or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations demonstrate that the AICC‐based smoothing parameter is competitive with a plug‐in method (assuming that one exists) when the plug‐in method works well but also performs well when the plug‐in approach fails or is unavailable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Royal Statistical Society: Series B (Statistical Methodology) Wiley

Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion

Loading next page...
 
/lp/wiley/smoothing-parameter-selection-in-nonparametric-regression-using-an-S5E04dB3hT
Publisher
Wiley
Copyright
1998 Royal Statistical Society
ISSN
1369-7412
eISSN
1467-9868
D.O.I.
10.1111/1467-9868.00125
Publisher site
See Article on Publisher Site

Abstract

Many different methods have been proposed to construct nonparametric estimates of a smooth regression function, including local polynomial, (convolution) kernel and smoothing spline estimators. Each of these estimators uses a smoothing parameter to control the amount of smoothing performed on a given data set. In this paper an improved version of a criterion based on the Akaike information criterion (AIC), termed AICC, is derived and examined as a way to choose the smoothing parameter. Unlike plug‐in methods, AICC can be used to choose smoothing parameters for any linear smoother, including local quadratic and smoothing spline estimators. The use of AICC avoids the large variability and tendency to undersmooth (compared with the actual minimizer of average squared error) seen when other ‘classical’ approaches (such as generalized cross‐validation (GCV) or the AIC) are used to choose the smoothing parameter. Monte Carlo simulations demonstrate that the AICC‐based smoothing parameter is competitive with a plug‐in method (assuming that one exists) when the plug‐in method works well but also performs well when the plug‐in approach fails or is unavailable.

Journal

Journal of the Royal Statistical Society: Series B (Statistical Methodology)Wiley

Published: Jan 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off