Smaller than predicted increase in aboveground net primary production and yield of field‐grown soybean under fully open‐air (CO 2 ) elevation

Smaller than predicted increase in aboveground net primary production and yield of field‐grown... The Intergovernmental Panel on Climate Change projects that atmospheric (CO2) will reach 550 ppm by 2050. Numerous assessments of plant response to elevated (CO2) have been conducted in chambers and enclosures, with only a few studies reporting responses in fully open‐air, field conditions. Reported yields for the world's two major grain crops, wheat and rice, are substantially lower in free‐air CO2 enrichment (FACE) than predicted from similar elevated (CO2) experiments within chambers. This discrepancy has major implications for forecasting future global food supply. Globally, the leguminous‐crop soybean (Glycine max (L.) Merr.) is planted on more land than any other dicotyledonous crop. Previous studies have shown that total dry mass production increased on average 37% in response to increasing (CO2) to approximately 700 ppm, but harvestable yield will increase only 24%. Is this representative of soybean responses under open‐air field conditions? The effects of elevation of (CO2) to 550 ppm on total production, partitioning and yield of soybean over 3 years are reported. This is the first FACE study of soybean (http://www.soyface.uiuc.edu) and the first on crops in the Midwest of North America, one of the major food production regions of the globe. Although increases in both aboveground net primary production (17–18%) and yield (15%) were consistent across three growing seasons and two cultivars, the relative stimulation was less than projected from previous chamber experiments. As in previous studies, partitioning to seed dry mass decreased; however, net production during vegetative growth did not increase and crop maturation was delayed, not accelerated as previously reported. These results suggest that chamber studies may have over‐estimated the stimulatory effect of rising (CO2), with important implications on global food supply forecasts. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Change Biology Wiley

Smaller than predicted increase in aboveground net primary production and yield of field‐grown soybean under fully open‐air (CO 2 ) elevation

Loading next page...
 
/lp/wiley/smaller-than-predicted-increase-in-aboveground-net-primary-production-GaOuFTSk4X
Publisher
Wiley
Copyright
Copyright © 2005 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1354-1013
eISSN
1365-2486
D.O.I.
10.1111/j.1365-2486.2005.001017.x
Publisher site
See Article on Publisher Site

Abstract

The Intergovernmental Panel on Climate Change projects that atmospheric (CO2) will reach 550 ppm by 2050. Numerous assessments of plant response to elevated (CO2) have been conducted in chambers and enclosures, with only a few studies reporting responses in fully open‐air, field conditions. Reported yields for the world's two major grain crops, wheat and rice, are substantially lower in free‐air CO2 enrichment (FACE) than predicted from similar elevated (CO2) experiments within chambers. This discrepancy has major implications for forecasting future global food supply. Globally, the leguminous‐crop soybean (Glycine max (L.) Merr.) is planted on more land than any other dicotyledonous crop. Previous studies have shown that total dry mass production increased on average 37% in response to increasing (CO2) to approximately 700 ppm, but harvestable yield will increase only 24%. Is this representative of soybean responses under open‐air field conditions? The effects of elevation of (CO2) to 550 ppm on total production, partitioning and yield of soybean over 3 years are reported. This is the first FACE study of soybean (http://www.soyface.uiuc.edu) and the first on crops in the Midwest of North America, one of the major food production regions of the globe. Although increases in both aboveground net primary production (17–18%) and yield (15%) were consistent across three growing seasons and two cultivars, the relative stimulation was less than projected from previous chamber experiments. As in previous studies, partitioning to seed dry mass decreased; however, net production during vegetative growth did not increase and crop maturation was delayed, not accelerated as previously reported. These results suggest that chamber studies may have over‐estimated the stimulatory effect of rising (CO2), with important implications on global food supply forecasts.

Journal

Global Change BiologyWiley

Published: Oct 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off