Access the full text.
Sign up today, get DeepDyve free for 14 days.
Nonprecious metal catalysts (NPMCs) FeNC are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety FeN4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1O2Fe1N4. The modulated FeNC exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm−2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1O2Fe1N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1O2 dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.
Advanced Energy Materials – Wiley
Published: Jan 1, 2018
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.