Single and binary catalyst systems based on nickel and palladium in polymerization of ethylene

Single and binary catalyst systems based on nickel and palladium in polymerization of ethylene The catalyst (N,N‐bis(2,6‐dibenzhydryl‐4‐ethoxyphenyl)butane‐2,3‐diimine)nickel dibromide, a late transition metal catalyst, was prepared and used in ethylene polymerization. The effects of reaction parameters such as polymerization temperature, co‐catalyst to catalyst molar ratio and monomer pressure on the polymerization were investigated. The α‐diimine nickel‐based catalyst was demonstrated to be thermally robust at a temperature as high as 90 °C. The highest activity of the catalyst (494 kg polyethylene (mol cat)−1 h−1) was obtained at [Al]/[Ni] = 600:1, temperature of 90 °C and pressure of 5 bar. In addition, the performance of a binary catalyst using nickel‐ and palladium‐based complexes was compared with that of the corresponding individual catalytic systems in ethylene polymerization. In a study of the catalyst systems, the average molecular weight and molecular weight distribution for the binary polymerization were between those for the individual catalytic polymerizations; however, the binary catalyst activity was lower than that of the two individual ones. The obtained polyethylenes had high molecular weights in the region of 105 g mol−1. Gel permeation chromatography analysis showed a narrow molecular weight distribution of 1.44 for the nickel‐based catalyst and 1.61 for the binary catalyst system. The branching density of the polyethylenes generated using the binary catalytic system (30 branches/1000 C) was lower than that generated using the nickel‐based catalyst (51/1000 C). X‐ray diffraction study of the polymer chains showed higher crystallinity with lower branching of the polymer obtained. Also Fourier transform infrared spectra confirmed that all obtained polymers were low‐density polyethylene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Single and binary catalyst systems based on nickel and palladium in polymerization of ethylene

Loading next page...
 
/lp/wiley/single-and-binary-catalyst-systems-based-on-nickel-and-palladium-in-YbghwJsBpF
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4153
Publisher site
See Article on Publisher Site

Abstract

The catalyst (N,N‐bis(2,6‐dibenzhydryl‐4‐ethoxyphenyl)butane‐2,3‐diimine)nickel dibromide, a late transition metal catalyst, was prepared and used in ethylene polymerization. The effects of reaction parameters such as polymerization temperature, co‐catalyst to catalyst molar ratio and monomer pressure on the polymerization were investigated. The α‐diimine nickel‐based catalyst was demonstrated to be thermally robust at a temperature as high as 90 °C. The highest activity of the catalyst (494 kg polyethylene (mol cat)−1 h−1) was obtained at [Al]/[Ni] = 600:1, temperature of 90 °C and pressure of 5 bar. In addition, the performance of a binary catalyst using nickel‐ and palladium‐based complexes was compared with that of the corresponding individual catalytic systems in ethylene polymerization. In a study of the catalyst systems, the average molecular weight and molecular weight distribution for the binary polymerization were between those for the individual catalytic polymerizations; however, the binary catalyst activity was lower than that of the two individual ones. The obtained polyethylenes had high molecular weights in the region of 105 g mol−1. Gel permeation chromatography analysis showed a narrow molecular weight distribution of 1.44 for the nickel‐based catalyst and 1.61 for the binary catalyst system. The branching density of the polyethylenes generated using the binary catalytic system (30 branches/1000 C) was lower than that generated using the nickel‐based catalyst (51/1000 C). X‐ray diffraction study of the polymer chains showed higher crystallinity with lower branching of the polymer obtained. Also Fourier transform infrared spectra confirmed that all obtained polymers were low‐density polyethylene.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off