Silver, iron, and nickel immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 MNPs catalyzed one‐pot five‐component reactions for the synthesis of tetrahydropyridines by tandem condensation of amines, aldehydes, and methyl acetoacetate

Silver, iron, and nickel immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 MNPs catalyzed... In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1, 2 equiv of amines 2, and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Organometallic Chemistry Wiley

Silver, iron, and nickel immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 MNPs catalyzed one‐pot five‐component reactions for the synthesis of tetrahydropyridines by tandem condensation of amines, aldehydes, and methyl acetoacetate

Loading next page...
 
/lp/wiley/silver-iron-and-nickel-immobilized-on-hydroxyapatite-core-shell-fe2o3-UjhAyKu2IQ
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0268-2605
eISSN
1099-0739
D.O.I.
10.1002/aoc.4172
Publisher site
See Article on Publisher Site

Abstract

In this study, Ag, Ni2+, and Fe2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 nanoparticles (γ‐Fe2O3@HAp‐Ag, γ‐Fe2O3@HAp‐Ni2+, and γ‐Fe2O3@HAp‐Fe2+) as a new and reusable Lewis acid magnetic nanocatalyst was successfully synthesized and reported for an atom economic, extremely facile, and environmentally benign procedure for the synthesis of highly functionalized tetrahydropyridines derivatives 4a‐t is described by one‐pot five‐component reaction of 2 equiv of aldehydes 1, 2 equiv of amines 2, and 1 equiv of methyl acetoacetate 3 in EtOH at room temperature in good to high yields and short reaction time. The presented methodology offers several advantages such as easy work‐up procedure, reusability of the magnetic nanocatalyst, operational simplicity, green synthesis avoiding toxic reagents and solvent, mild reaction conditions, and no tedious column chromatographic separation.

Journal

Applied Organometallic ChemistryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off