Access the full text.
Sign up today, get DeepDyve free for 14 days.
Silicon (Si) has many beneficial effects in plants, especially for the survival from biotic and abiotic stresses. However, Si may negatively affect the quality of lignocellulosic biomass for bioenergy purposes. Despite many studies, the regulation of Si distribution and deposition in plants remains to be fully understood. Here, we have identified the Brachypodium distachyon mutant low‐silicon 1 (Bdlsi1‐1), with impaired channeling function of the Si influx transporter BdLSI1, resulting in a substantial reduction of Si in shoots. Bioimaging by laser ablation‐inductively coupled plasma‐mass spectrometry showed that the wild‐type plants deposited Si mainly in the bracts, awns and leaf macrohairs. The Bdlsi1‐1 mutants showed substantial (>90%) reduction of Si in the mature shoots. The Bdlsi1‐1 leaves had fewer, shorter macrohairs, but the overall pattern of Si distribution in bracts and leaf tissues was similar to that in the wild‐type. The Bdlsi1‐1 plants supplied with Si had significantly lower seed weights, compared to the wild‐type. In low‐Si media, the seed weight of wild‐type plants was similar to that of Bdlsi1‐1 mutants supplied with Si, while the Bdlsi1‐1 seed weight decreased further. We conclude that Si deficiency results in widespread alterations in leaf surface morphology and seed formation in Brachypodium, showing the importance of Si for successful development in grasses.
Physiologia Plantarum – Wiley
Published: Jan 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.