“Whoa! It's like Spotify but for academic articles.”

Instant Access to Thousands of Journals for just $40/month

Get 2 Weeks Free

Signaling to the ribosome in cancer—It is more than just mTORC1

It is becoming increasingly clear that dysregulation of protein synthesis contributes to a range of diseases characterized by tissue overgrowth. These include arterial stenosis, cardiac hypertrophy, hamartomas, and cancer. The central hub for the regulation of protein synthesis is the ribosome, where the key signaling pathways downstream of RAS, MYC, and phosphatidylinositol‐3‐kinase (PI3K) converge to confer exquisite, coordinated control of ribosome synthesis and function. Such cooperation ensures strict regulation of protein synthesis rates and cell growth. This review will focus on the role the PI3K/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway plays in regulating ribosome function during both health and disease, its interaction with the other key growth regulatory pathways activated by RAS and MYC, and the therapeutic potential for targeting this network. © 2011 IUBMB IUBMB Life, 63(2): 79–85, 2011 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png IUBMB Life Wiley

Loading next page...

You're reading a free preview. Subscribe to read the entire article.

And millions more from thousands of peer-reviewed journals, for just $40/month

Get 2 Weeks Free

To be the best researcher, you need access to the best research

  • With DeepDyve, you can stop worrying about how much articles cost, or if it's too much hassle to order — it's all at your fingertips. Your research is important and deserves the top content.
  • Read from thousands of the leading scholarly journals from Springer, Elsevier, Nature, IEEE, Wiley-Blackwell and more.
  • All the latest content is available, no embargo periods.