Sensitivity of Extreme Rainfall to Atmospheric Moisture Content in the Arid/Semiarid Southwestern United States: Implications for Probable Maximum Precipitation Estimates

Sensitivity of Extreme Rainfall to Atmospheric Moisture Content in the Arid/Semiarid Southwestern... Sensitivity of extreme rainfall to atmospheric moisture content for the 19 August 2014 storm in Arizona is investigated based on numerical experiments using the Weather Research and Forecasting model. Analyses are designed to develop an improved understanding of the roles of atmospheric moisture content and complex terrain in controlling spatial and temporal variability of extreme rainfall in the arid/semiarid southwestern United States. The control simulation identifies complex interactions of low‐level moisture transport and orographic lift as key elements in producing extreme rainfall for the first storm episode. Two sensitivity experiments are performed by increasing the relative humidity by 10% and 20% in both initial and boundary conditions used for the control simulation. Changes in atmospheric moisture content modify the storm structure and evolution, instability of the storm environment, and interactions of synoptic flow with complex terrain. The two storm episodes within this event exhibit contrasting responses to the increase of moisture content, with rainfall accumulation and maximum convective available potential energy increased for the second storm episode as opposed to a more complex relationship for the first storm episode. A moisture maximization simulation was also designed to mimic the framework of moisture maximization in probable maximum precipitation estimates. Our results highlight the nonlinear relationship between extreme rainfall and atmospheric moisture content in complex environments where small‐scale convection plays a dominant role. Limitations of probable maximum precipitation estimates based physical models are also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Atmospheres Wiley

Sensitivity of Extreme Rainfall to Atmospheric Moisture Content in the Arid/Semiarid Southwestern United States: Implications for Probable Maximum Precipitation Estimates

Loading next page...
 
/lp/wiley/sensitivity-of-extreme-rainfall-to-atmospheric-moisture-content-in-the-Zs1h8eSCHl
Publisher
Wiley
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-897X
eISSN
2169-8996
D.O.I.
10.1002/2017JD027850
Publisher site
See Article on Publisher Site

Abstract

Sensitivity of extreme rainfall to atmospheric moisture content for the 19 August 2014 storm in Arizona is investigated based on numerical experiments using the Weather Research and Forecasting model. Analyses are designed to develop an improved understanding of the roles of atmospheric moisture content and complex terrain in controlling spatial and temporal variability of extreme rainfall in the arid/semiarid southwestern United States. The control simulation identifies complex interactions of low‐level moisture transport and orographic lift as key elements in producing extreme rainfall for the first storm episode. Two sensitivity experiments are performed by increasing the relative humidity by 10% and 20% in both initial and boundary conditions used for the control simulation. Changes in atmospheric moisture content modify the storm structure and evolution, instability of the storm environment, and interactions of synoptic flow with complex terrain. The two storm episodes within this event exhibit contrasting responses to the increase of moisture content, with rainfall accumulation and maximum convective available potential energy increased for the second storm episode as opposed to a more complex relationship for the first storm episode. A moisture maximization simulation was also designed to mimic the framework of moisture maximization in probable maximum precipitation estimates. Our results highlight the nonlinear relationship between extreme rainfall and atmospheric moisture content in complex environments where small‐scale convection plays a dominant role. Limitations of probable maximum precipitation estimates based physical models are also discussed.

Journal

Journal of Geophysical Research: AtmospheresWiley

Published: Jan 16, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off