Seasonal and Spatial Changes in Trichodesmium Associated With Physicochemical Properties in East China Sea and Southern Yellow Sea

Seasonal and Spatial Changes in Trichodesmium Associated With Physicochemical Properties in East... Trichodesmium is broadly distributed and occasionally blooms in the East China Sea (ECS) and southern Yellow Sea, where it contributes to local N and C budgets. However, its population structure, spatiotemporal distribution, controlling factors, and N2 fixation remain poorly documented. Here we provide high spatial resolution data sets of Trichodesmium during the four seasons of 2011–2012 using water‐ and net‐collected methods. The net‐collected method captures colonial trichomes of Trichodesmium effectively but results in an underestimation of free trichomes. Colonies are rarely observed and occur only on the ECS shelf, which are easily missed in water‐collected samples. Depth‐integrated densities of Trichodesmium were found to be significantly higher in warm seasons than in cold seasons. Maximum densities in the water column were generally found at depths of 10–50 m. Trichodesmium thrives on the oligotrophic, warm, offshore ECS shelf (controlled by the Kuroshio and Taiwan Warm Current), but restrains in the cold southern Yellow Sea and the eutrophic, inshore ECS. Seasonal and spatial variations in Trichodesmium are closely correlated with physicochemical properties (mainly temperature and P), which are primarily controlled by circulation alteration and water mass movement. The N2 fixation rates of Trichodesmium in the ECS in summer and autumn (>20°C) are roughly estimated at 17.1 and 41.7 μmol N m−2 d−1 under nonbloom conditions, which potentially contribute to 81% and 57% of biological N2 fixation, respectively. Compared with historical data since the 1970s, Trichodesmium densities have increased considerably in all seasons, and the distribution boundary has shifted northward under regional warming and hydrological changes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Geophysical Research: Biogeosciences Wiley

Seasonal and Spatial Changes in Trichodesmium Associated With Physicochemical Properties in East China Sea and Southern Yellow Sea

Loading next page...
 
/lp/wiley/seasonal-and-spatial-changes-in-trichodesmium-associated-with-SwRymUsfpk
Publisher
Wiley
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
2169-8953
eISSN
2169-8961
D.O.I.
10.1002/2017JG004275
Publisher site
See Article on Publisher Site

Abstract

Trichodesmium is broadly distributed and occasionally blooms in the East China Sea (ECS) and southern Yellow Sea, where it contributes to local N and C budgets. However, its population structure, spatiotemporal distribution, controlling factors, and N2 fixation remain poorly documented. Here we provide high spatial resolution data sets of Trichodesmium during the four seasons of 2011–2012 using water‐ and net‐collected methods. The net‐collected method captures colonial trichomes of Trichodesmium effectively but results in an underestimation of free trichomes. Colonies are rarely observed and occur only on the ECS shelf, which are easily missed in water‐collected samples. Depth‐integrated densities of Trichodesmium were found to be significantly higher in warm seasons than in cold seasons. Maximum densities in the water column were generally found at depths of 10–50 m. Trichodesmium thrives on the oligotrophic, warm, offshore ECS shelf (controlled by the Kuroshio and Taiwan Warm Current), but restrains in the cold southern Yellow Sea and the eutrophic, inshore ECS. Seasonal and spatial variations in Trichodesmium are closely correlated with physicochemical properties (mainly temperature and P), which are primarily controlled by circulation alteration and water mass movement. The N2 fixation rates of Trichodesmium in the ECS in summer and autumn (>20°C) are roughly estimated at 17.1 and 41.7 μmol N m−2 d−1 under nonbloom conditions, which potentially contribute to 81% and 57% of biological N2 fixation, respectively. Compared with historical data since the 1970s, Trichodesmium densities have increased considerably in all seasons, and the distribution boundary has shifted northward under regional warming and hydrological changes.

Journal

Journal of Geophysical Research: BiogeosciencesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off