Scratch hardness and deformation maps for polycarbonate and polyethylene

Scratch hardness and deformation maps for polycarbonate and polyethylene This paper presents results obtained from the scratching of an ultrahigh molecular weight polyethylene (UHMWPE) and a polycarbonate (PC). The data are used to obtain various surface mechanical properties such as the hardness and also the prevailing deformation mechanisms. Scratch results are reported for the case of rigid conical indenters for various tip included angles, bulk temperatures, scratch velocities, and applied normal loads. Scanning electron microscopy (SEM) and laser profilometry data are used to study the surface deformation and damage mechanisms, and to assess the topography of the surfaces after scratching. Deformation maps are provided for these polymers under different experimental conditions, which describe the various deformation characteristics. In general, these polymers show both increasing and decreasing trends for the scratch hardness values with variation of cone angle, (4qW/ηd2; where W is the normal load, d the width of the residual scratch, and q is a characteristic contact parameter, which ranges between 1 and 2). The scratch velocity, which governs the imposed strain rate, imparts an increasing effect on the hardness values, whereas a higher bulk temperature of the material decreases the scratch hardness. The measured responses of the surface properties of these polymers are shown to greatly depend upon the kind of deformation mechanism prevalent during the scratching and associated material removal processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polymer Engineering & Science Wiley

Scratch hardness and deformation maps for polycarbonate and polyethylene

Loading next page...
 
/lp/wiley/scratch-hardness-and-deformation-maps-for-polycarbonate-and-MXFR2tOLS0
Publisher
Wiley
Copyright
Copyright © 1996 Society of Plastics Engineers
ISSN
0032-3888
eISSN
1548-2634
D.O.I.
10.1002/pen.10702
Publisher site
See Article on Publisher Site

Abstract

This paper presents results obtained from the scratching of an ultrahigh molecular weight polyethylene (UHMWPE) and a polycarbonate (PC). The data are used to obtain various surface mechanical properties such as the hardness and also the prevailing deformation mechanisms. Scratch results are reported for the case of rigid conical indenters for various tip included angles, bulk temperatures, scratch velocities, and applied normal loads. Scanning electron microscopy (SEM) and laser profilometry data are used to study the surface deformation and damage mechanisms, and to assess the topography of the surfaces after scratching. Deformation maps are provided for these polymers under different experimental conditions, which describe the various deformation characteristics. In general, these polymers show both increasing and decreasing trends for the scratch hardness values with variation of cone angle, (4qW/ηd2; where W is the normal load, d the width of the residual scratch, and q is a characteristic contact parameter, which ranges between 1 and 2). The scratch velocity, which governs the imposed strain rate, imparts an increasing effect on the hardness values, whereas a higher bulk temperature of the material decreases the scratch hardness. The measured responses of the surface properties of these polymers are shown to greatly depend upon the kind of deformation mechanism prevalent during the scratching and associated material removal processes.

Journal

Polymer Engineering & ScienceWiley

Published: Dec 1, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off