Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire

Scenarios for future wildfire risk in California: links between changing demography, land use,... Over 21,000 future California residential wildfire risk scenarios were developed on a monthly 1/8° grid, using statistical wildfire models. We explore interactions between two global emissions scenarios, three climate models, six spatially explicit population growth scenarios derived from two growth models, and a range of parameters defining properties' vulnerability to loss. Scenarios are evaluated over two future time periods relative to historic baselines. We also explore effects of spatial resolutions for calculating household exposure to wildfire on changes in estimated future property losses. Our goal was not to produce one authoritative set of future risk scenarios but rather to understand what parameters are important for robustly characterizing effects of climate and growth on future residential property risks. By end of century, variation across development scenarios accounts for far more variability in statewide residential wildfire risks than does variation across climate scenarios. However, the most extreme increases in residential fire risks result from combining high‐growth/high‐sprawl scenarios with the most extreme climates considered here. Case studies for the Bay Area and the Sierra foothills demonstrate that, while land use decisions profoundly influence future residential wildfire risks, effects of diverse growth and land use strategies vary greatly around the state. Copyright © 2014 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmetrics Wiley

Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire

Loading next page...
 
/lp/wiley/scenarios-for-future-wildfire-risk-in-california-links-between-FSW6iZJuCG
Publisher
Wiley
Copyright
Copyright © 2014 John Wiley & Sons, Ltd.
ISSN
1180-4009
eISSN
1099-095X
D.O.I.
10.1002/env.2280
Publisher site
See Article on Publisher Site

Abstract

Over 21,000 future California residential wildfire risk scenarios were developed on a monthly 1/8° grid, using statistical wildfire models. We explore interactions between two global emissions scenarios, three climate models, six spatially explicit population growth scenarios derived from two growth models, and a range of parameters defining properties' vulnerability to loss. Scenarios are evaluated over two future time periods relative to historic baselines. We also explore effects of spatial resolutions for calculating household exposure to wildfire on changes in estimated future property losses. Our goal was not to produce one authoritative set of future risk scenarios but rather to understand what parameters are important for robustly characterizing effects of climate and growth on future residential property risks. By end of century, variation across development scenarios accounts for far more variability in statewide residential wildfire risks than does variation across climate scenarios. However, the most extreme increases in residential fire risks result from combining high‐growth/high‐sprawl scenarios with the most extreme climates considered here. Case studies for the Bay Area and the Sierra foothills demonstrate that, while land use decisions profoundly influence future residential wildfire risks, effects of diverse growth and land use strategies vary greatly around the state. Copyright © 2014 John Wiley & Sons, Ltd.

Journal

EnvironmetricsWiley

Published: Jan 1, 2014

Keywords: ; ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off