Scales and dimensions of momentum dissipation during preferential flow in soils

Scales and dimensions of momentum dissipation during preferential flow in soils Momentum dissipation may dominate flow in soils over a considerable distance when input rate and antecedent soil moisture are high enough and when adequate soil structures are present. The concept is derived from momentum balance. It is applied to drainage flow from a column of undisturbed soil and a weighing lysimeter and to water content variations at five depths due to sprinkling. Momentum of input is much lower than momentum during flow in the soil; however, the former is considered important in triggering momentum dissipation within the profile. Drainage flow at a depth of 2.2 m shows flow completely dominated by momentum dissipation, whereas momentum of flow within the soil profile increases with depth, indicating acceleration over a vertical distance from 0.15 to 0.55 m. The Reynolds numbers show laminar flow in all cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Scales and dimensions of momentum dissipation during preferential flow in soils

Loading next page...
 
/lp/wiley/scales-and-dimensions-of-momentum-dissipation-during-preferential-flow-aIgtIrOotW
Publisher
Wiley
Copyright
Copyright © 1999 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/1998WR900112
Publisher site
See Article on Publisher Site

Abstract

Momentum dissipation may dominate flow in soils over a considerable distance when input rate and antecedent soil moisture are high enough and when adequate soil structures are present. The concept is derived from momentum balance. It is applied to drainage flow from a column of undisturbed soil and a weighing lysimeter and to water content variations at five depths due to sprinkling. Momentum of input is much lower than momentum during flow in the soil; however, the former is considered important in triggering momentum dissipation within the profile. Drainage flow at a depth of 2.2 m shows flow completely dominated by momentum dissipation, whereas momentum of flow within the soil profile increases with depth, indicating acceleration over a vertical distance from 0.15 to 0.55 m. The Reynolds numbers show laminar flow in all cases.

Journal

Water Resources ResearchWiley

Published: May 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off