Access the full text.
Sign up today, get DeepDyve free for 14 days.
This work reports the synthesis of rigid polyurethane (PU) foams modified by disilanolisobutyl polyhedral oligomeric silsesquioxane (DSIPOSS). This open‐cage nanostructure silsesquioxane has 2 hydroxyl groups and therefore can be chemically built directly in the PU backbone to form hybrid polyurethane‐POSS foam. Synthesis procedure using polymeric 4,4′‐diphenylmethane diisocyanate, polyetherol, and DSIPOSS has been elaborated, and the influence of POSS on the cell structure, closed cell content, apparent density, thermal conductivity, and compression strength of the rigid polyurethane composites has been evaluated. The hybrid composite foams containing 1.5 and 2.0 wt% DSIPOSS showed a reduced number of cells and an increased average area of foam cells in comparison with the unmodified PU, while the addition of 0.5wt% of DSIPOSS causes an increase in the number of cells of the foam as compared with the reference and thus a reduction in the average area of cells. X‐ray microtomography provided data on the porous structure of polyurethane hybrid materials, including reduction of the pore surface area. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy analysis revealed a good homogenization of DSIPOSS in polyurethane matrix. Thermogravimetric analysis results have shown that incorporation of POSS nanoparticles into PU foam does not significantly change the degradation process. The compressive strength of PUF‐POSS hybrids in the direction parallel and perpendicular to the direction of foam rise is greater than the strength of the reference foam already for the lowest DSIPOSS content.
Polymers for Advanced Technologies – Wiley
Published: Jan 1, 2018
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.