Reverse Bias Behavior of Halide Perovskite Solar Cells

Reverse Bias Behavior of Halide Perovskite Solar Cells The future commercialization of halide perovskite solar cells relies on improving their stability. There are several studies focused on understanding degradation under operating conditions in light, but little is known about the stability of these solar cells under reverse bias conditions. Reverse bias stability is important because shaded cells in a module are put into reverse bias by the illuminated cells. In this paper, a phenomenological study is presented of the reverse bias behavior of halide perovskite solar cells and it is shown that reverse bias can lead to a partially recoverable loss in efficiency, primarily caused by a decrease in V OC. A general mechanism is proposed, supported by drift–diffusion simulations, to explain how these cells breakdown via tunneling caused by accumulated ionic defects and suggests that the reversible loss in efficiency may be due to an electrochemical reaction of these defects. Finally, the implications of these phenomena are discussed and how they can possibly be addressed is also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Reverse Bias Behavior of Halide Perovskite Solar Cells

Loading next page...
 
/lp/wiley/reverse-bias-behavior-of-halide-perovskite-solar-cells-OjAj2900lT
Publisher
Wiley
Copyright
© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
D.O.I.
10.1002/aenm.201702365
Publisher site
See Article on Publisher Site

Abstract

The future commercialization of halide perovskite solar cells relies on improving their stability. There are several studies focused on understanding degradation under operating conditions in light, but little is known about the stability of these solar cells under reverse bias conditions. Reverse bias stability is important because shaded cells in a module are put into reverse bias by the illuminated cells. In this paper, a phenomenological study is presented of the reverse bias behavior of halide perovskite solar cells and it is shown that reverse bias can lead to a partially recoverable loss in efficiency, primarily caused by a decrease in V OC. A general mechanism is proposed, supported by drift–diffusion simulations, to explain how these cells breakdown via tunneling caused by accumulated ionic defects and suggests that the reversible loss in efficiency may be due to an electrochemical reaction of these defects. Finally, the implications of these phenomena are discussed and how they can possibly be addressed is also discussed.

Journal

Advanced Energy MaterialsWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off