Retrogradation of partially gelatinised potato starch prepared by ball milling

Retrogradation of partially gelatinised potato starch prepared by ball milling This study was performed to evaluate the effect of partial gelatinisation on the retrogradation of modified potato starch. The partially gelatinised starches with gelatinisation degree at mean levels of 22.47%, 49.18%, 76.80% and 86.19% were prepared by ball milling (0.5, 1.5, 3 and 10 h). The thermal properties and crystal structure of retrograded starch were examined during 21 days of refrigerated storage at 4 °C. Retrograded starch with high initial gelatinisation degree (86.19%) showed higher retrogradation enthalpy of 6.12 ± 0.18 J g−1 and lower onset temperature of 45.41 ± 0.24 °C than sample with low gelatinisation degree (22.47%) where the results were 1.32 ± 0.18 J g−1 and 54.05 ± 0.03 °C, respectively. During storage, two peaks in the X‐ray diffractograms for starch with high gelatinisation degree appeared and increased rapidly, while the peaks for starch with low gelatinisation degree increased slowly. These results suggest that a certain amount of remainder crystals presented in partially gelatinised starch impeded the retrogradation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Food Science & Technology Wiley

Retrogradation of partially gelatinised potato starch prepared by ball milling

Loading next page...
 
/lp/wiley/retrogradation-of-partially-gelatinised-potato-starch-prepared-by-ball-5wOkCTwZeN
Publisher
Wiley
Copyright
International Journal of Food Science and Technology © 2018 Institute of Food Science and Technology
ISSN
0950-5423
eISSN
1365-2621
D.O.I.
10.1111/ijfs.13683
Publisher site
See Article on Publisher Site

Abstract

This study was performed to evaluate the effect of partial gelatinisation on the retrogradation of modified potato starch. The partially gelatinised starches with gelatinisation degree at mean levels of 22.47%, 49.18%, 76.80% and 86.19% were prepared by ball milling (0.5, 1.5, 3 and 10 h). The thermal properties and crystal structure of retrograded starch were examined during 21 days of refrigerated storage at 4 °C. Retrograded starch with high initial gelatinisation degree (86.19%) showed higher retrogradation enthalpy of 6.12 ± 0.18 J g−1 and lower onset temperature of 45.41 ± 0.24 °C than sample with low gelatinisation degree (22.47%) where the results were 1.32 ± 0.18 J g−1 and 54.05 ± 0.03 °C, respectively. During storage, two peaks in the X‐ray diffractograms for starch with high gelatinisation degree appeared and increased rapidly, while the peaks for starch with low gelatinisation degree increased slowly. These results suggest that a certain amount of remainder crystals presented in partially gelatinised starch impeded the retrogradation.

Journal

International Journal of Food Science & TechnologyWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off