Restructuring performance prediction with a rebalanced and clustered support vector machine

Restructuring performance prediction with a rebalanced and clustered support vector machine This paper discusses whether asset restructuring can improve firm performance over decades. Variation in the stock price or the financial ratio is used as the dependent variable of either short‐ or long‐term effectiveness to evaluate the variance both before and after asset restructuring. The result is varied. It is necessary to develop a foresight approach for the mixed situation. This work pioneers to forecast effectiveness of asset restructuring with a rebalanced and clustered support vector machine (RCS). The profitability variation 1 year before and after asset restructuring is used as the dependent variable. The current financial indicators of the year of asset restructuring are used as independent variables. Specially treated listed companies are used as research samples, as they frequently adopt asset restructuring. In modeling, the skew distribution of samples achieving and failing to achieve performance improvement with asset restructuring is handled with rebalancing. The similar experienced knowledge of asset restructuring to the current asset restructuring is filtered out with clustering. With the help from rebalancing and clustering, a support vector machine is constructed for prediction, together with other forecasting models of multivariate discriminant analysis, logistic regression, probit regression, and case‐based reasoning. These models' standalone modes are used as benchmarks. The empirical results demonstrate the applicability of the RCS for forecasting effectiveness of asset restructuring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Forecasting Wiley

Restructuring performance prediction with a rebalanced and clustered support vector machine

Loading next page...
 
/lp/wiley/restructuring-performance-prediction-with-a-rebalanced-and-clustered-rY6vvVSWUH
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0277-6693
eISSN
1099-131X
D.O.I.
10.1002/for.2512
Publisher site
See Article on Publisher Site

Abstract

This paper discusses whether asset restructuring can improve firm performance over decades. Variation in the stock price or the financial ratio is used as the dependent variable of either short‐ or long‐term effectiveness to evaluate the variance both before and after asset restructuring. The result is varied. It is necessary to develop a foresight approach for the mixed situation. This work pioneers to forecast effectiveness of asset restructuring with a rebalanced and clustered support vector machine (RCS). The profitability variation 1 year before and after asset restructuring is used as the dependent variable. The current financial indicators of the year of asset restructuring are used as independent variables. Specially treated listed companies are used as research samples, as they frequently adopt asset restructuring. In modeling, the skew distribution of samples achieving and failing to achieve performance improvement with asset restructuring is handled with rebalancing. The similar experienced knowledge of asset restructuring to the current asset restructuring is filtered out with clustering. With the help from rebalancing and clustering, a support vector machine is constructed for prediction, together with other forecasting models of multivariate discriminant analysis, logistic regression, probit regression, and case‐based reasoning. These models' standalone modes are used as benchmarks. The empirical results demonstrate the applicability of the RCS for forecasting effectiveness of asset restructuring.

Journal

Journal of ForecastingWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off