Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation

Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing... Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Restraining the Octahedron Collapse in Lithium and Manganese Rich NCM Cathode toward Suppressing Structure Transformation

Loading next page...
 
/lp/wiley/restraining-the-octahedron-collapse-in-lithium-and-manganese-rich-ncm-4MRwSYvSnO
Publisher
Wiley
Copyright
© 2022 Wiley‐VCH GmbH
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.202201323
Publisher site
See Article on Publisher Site

Abstract

Lithium and manganese rich nickel cobalt manganese oxide (LMRNCM), as an attractive high energy density cathode for advanced lithium‐ion batteries (LIBs), suffers from inevitable lattice oxygen release, irreversible transition metal (TM) ion migration, and interface side reactions at high charge cut‐off voltage. Herein, a facile and efficient surface strategy is proposed to stabilize the layered structure by regulating the chemical bond interaction between the polyacrylonitrile (PAN) binder and the LMRNCM particles. Due to the high retention of discharge specific capacity and average discharge voltage, the energy density retention of the PAN‐modified LMRNCM sample is up to 80.12% after 300 cycles at 100 mA g−1 current density, and the initial Coulombic efficiency and rate capacity are also improved simultaneously. Experimental and density functional theory evidence demonstrates that the exceptional performance is caused by the coordination bond interaction between the carbon‐nitrogen‐triple‐bond of PAN and the TM ion in the unstable transition metal oxygen octahedron. The interaction suppresses the irreversible migration of TM ions by increasing the energy barrier, and ensures that the PAN adheres to the LMRNCM particles tightly, which relieves electrolyte corrosion and enhances cohesiveness. This work exploits a modification strategy to stabilize the LMRNCM‐layered structure for high‐energy density LIB applications.

Journal

Advanced Energy MaterialsWiley

Published: Sep 1, 2022

Keywords: coordination bond interactions; LMRNCM; polyacrylonitrile binders; surface modifications; transition metal ions

References