Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper de‐inking sludge

Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper... 1. In minesoil reclamation, the establishment of a sustainable plant cover requires the improvement of limiting conditions and the re‐initiation of carbon (C) and nutrient cycling. 2. The approach used in this study for reclaiming an abandoned sandpit in Quebec, Canada, was based on a heavy organic amendment as an attempt to accelerate the reconstruction of a functional ecosystem. 3. The one‐time intervention consisted of incorporating paper de‐inking sludge into soil at two rates (0 and 105 dry t ha–1), supplemented with nitrogen (N) at three rates (3, 6 and 9 g kg–1 sludge) and phosphorus (P) at two rates (0·5 and 1·0 g kg–1 sludge) followed by seeding (mid‐summer) of Agropyron elongatum (Host) Beauv. (tall wheatgrass). 4. Standing biomass increased in the presence of sludge after both the first and second full growing seasons. High N application rates further increased yield, more importantly in the second season. The high P rate improved grass establishment in all cases. Ground cover increased with time and doubled in the presence of sludge whereas it declined in the absence of sludge. Phosphorus and N uptake was improved consistently in the presence of sludge. 5. Sludge application resulted in improved water retention and cation exchange capacities, and an increase in pH and bulk density of sandpit minesoil, all of which may have accounted for the significant improvement in plant responses. Levels of soil C and N suggest that this reconstructed system is approaching sustainability. 6. Adequate N and P supplements will accentuate the positive influence of sludge on revegetation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Restoration of ecosystem function in an abandoned sandpit: plant and soil responses to paper de‐inking sludge

Loading next page...
 
/lp/wiley/restoration-of-ecosystem-function-in-an-abandoned-sandpit-plant-and-dtwOHXvXtI
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
D.O.I.
10.1046/j.1365-2664.1999.00395.x
Publisher site
See Article on Publisher Site

Abstract

1. In minesoil reclamation, the establishment of a sustainable plant cover requires the improvement of limiting conditions and the re‐initiation of carbon (C) and nutrient cycling. 2. The approach used in this study for reclaiming an abandoned sandpit in Quebec, Canada, was based on a heavy organic amendment as an attempt to accelerate the reconstruction of a functional ecosystem. 3. The one‐time intervention consisted of incorporating paper de‐inking sludge into soil at two rates (0 and 105 dry t ha–1), supplemented with nitrogen (N) at three rates (3, 6 and 9 g kg–1 sludge) and phosphorus (P) at two rates (0·5 and 1·0 g kg–1 sludge) followed by seeding (mid‐summer) of Agropyron elongatum (Host) Beauv. (tall wheatgrass). 4. Standing biomass increased in the presence of sludge after both the first and second full growing seasons. High N application rates further increased yield, more importantly in the second season. The high P rate improved grass establishment in all cases. Ground cover increased with time and doubled in the presence of sludge whereas it declined in the absence of sludge. Phosphorus and N uptake was improved consistently in the presence of sludge. 5. Sludge application resulted in improved water retention and cation exchange capacities, and an increase in pH and bulk density of sandpit minesoil, all of which may have accounted for the significant improvement in plant responses. Levels of soil C and N suggest that this reconstructed system is approaching sustainability. 6. Adequate N and P supplements will accentuate the positive influence of sludge on revegetation.

Journal

Journal of Applied EcologyWiley

Published: Apr 1, 1999

References

  • Use of sod cutting for restoration of wet heathlands: revegetation and establishment of typical species in relation to soil conditions.
    Sansen, Sansen; Koedam, Koedam

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off