Reliability of Conservation Actions Based on Elasticity Analysis of Matrix Models

Reliability of Conservation Actions Based on Elasticity Analysis of Matrix Models Abstract: Matrix population models have entered the mainstream of conservation biology, with analysis of proportional sensitivities (elasticity analysis) of demographic rates becoming important components of conservation decision making. We identify areas where management applications using elasticity analysis potentially conflict with the mathematical basis of the technique, and we use a hypothetical example and three real data sets (Prairie Chicken ( Tympanuchus cupido), desert tortoise (Gopherus agassizii), and killer whale (Orcinus orca)) to evaluate the extent to which conservation recommendations based on elasticities might be misleading. First, changes in one demographic rate can change the qualitative ranking of the elasticity values calculated from a population matrix, a result that dampens enthusiasm for ranking conservation actions based solely on which rates have the highest elasticity values. Second, although elasticities often provide accurate predictions of future changes in population growth rate under management perturbations that are large or that affect more than one rate concurrently, concordance frequently fails when different rates vary by different amounts. In particular, when vital rates change to their high or low values observed in nature, predictions of future growth rate based on elasticities of a mean matrix can be misleading, even predicting population increase when the population growth rate actually declines following a perturbation. Elasticity measures will continue to be useful tools for applied ecologists, but they should be interpreted with considerable care. We suggest that studies using analytical elasticity analysis explicitly consider the range of variation possible for different rates and that simulation methods are a useful tool to this end. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Reliability of Conservation Actions Based on Elasticity Analysis of Matrix Models

Loading next page...
 
/lp/wiley/reliability-of-conservation-actions-based-on-elasticity-analysis-of-XEq0ibMeEt
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
D.O.I.
10.1046/j.1523-1739.1999.98232.x
Publisher site
See Article on Publisher Site

Abstract

Abstract: Matrix population models have entered the mainstream of conservation biology, with analysis of proportional sensitivities (elasticity analysis) of demographic rates becoming important components of conservation decision making. We identify areas where management applications using elasticity analysis potentially conflict with the mathematical basis of the technique, and we use a hypothetical example and three real data sets (Prairie Chicken ( Tympanuchus cupido), desert tortoise (Gopherus agassizii), and killer whale (Orcinus orca)) to evaluate the extent to which conservation recommendations based on elasticities might be misleading. First, changes in one demographic rate can change the qualitative ranking of the elasticity values calculated from a population matrix, a result that dampens enthusiasm for ranking conservation actions based solely on which rates have the highest elasticity values. Second, although elasticities often provide accurate predictions of future changes in population growth rate under management perturbations that are large or that affect more than one rate concurrently, concordance frequently fails when different rates vary by different amounts. In particular, when vital rates change to their high or low values observed in nature, predictions of future growth rate based on elasticities of a mean matrix can be misleading, even predicting population increase when the population growth rate actually declines following a perturbation. Elasticity measures will continue to be useful tools for applied ecologists, but they should be interpreted with considerable care. We suggest that studies using analytical elasticity analysis explicitly consider the range of variation possible for different rates and that simulation methods are a useful tool to this end.

Journal

Conservation BiologyWiley

Published: Aug 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off