An adaptive approach for modeling a fiber‐matrix composite with the FE2 method

An adaptive approach for modeling a fiber‐matrix composite with the FE2 method In materials with a complicated microstructre [1], the macroscopic material behaviour is unknown. In this work a Fiber‐Matrix composite is considered with elasto‐plastic fibers. A homogenization of the microscale leads to the macroscopic material properties. In the present work, this is realized in the frame of a FE2 formulation. It combines two nested finite element simulations. On the macroscale, the boundary value problem is modelled by finite elements, at each integration point a second finite element simulation on the microscale is employed to calculate the stress response and the material tangent modulus. One huge disadvantage of the approach is the high computational effort. Certainly, an accompanying homogenization is not necessary if the material behaves linear elastic. This motivates the present approach to deal with an adaptive scheme. An indicator, which makes use of the different boundary conditions (BC) of the BVP on microscale, is suggested. The homogenization with the Dirichlet BC overestimates the material tangent modulus whereas the Neumann BC underestimates the modulus [2]. The idea for an adaptive modeling is to use both of the BCs during the loading process of the macrostructure. Starting initially with the Neumann BC leads to an overestimation of the displacement response and thus the strain state of the boundary value problem on the macroscale. An accompanying homogenization is performed after the strain reaches a limit strain. Dirichlet BCs are employed for the accompanying homogenization. Some numerical examples demonstrate the capability of the presented method. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

An adaptive approach for modeling a fiber‐matrix composite with the FE2 method

Loading next page...
 
/lp/wiley/relaxing-mixed-integer-optimal-control-problems-using-a-time-imgR1bw2XN
Publisher
Wiley
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710277
Publisher site
See Article on Publisher Site

Abstract

In materials with a complicated microstructre [1], the macroscopic material behaviour is unknown. In this work a Fiber‐Matrix composite is considered with elasto‐plastic fibers. A homogenization of the microscale leads to the macroscopic material properties. In the present work, this is realized in the frame of a FE2 formulation. It combines two nested finite element simulations. On the macroscale, the boundary value problem is modelled by finite elements, at each integration point a second finite element simulation on the microscale is employed to calculate the stress response and the material tangent modulus. One huge disadvantage of the approach is the high computational effort. Certainly, an accompanying homogenization is not necessary if the material behaves linear elastic. This motivates the present approach to deal with an adaptive scheme. An indicator, which makes use of the different boundary conditions (BC) of the BVP on microscale, is suggested. The homogenization with the Dirichlet BC overestimates the material tangent modulus whereas the Neumann BC underestimates the modulus [2]. The idea for an adaptive modeling is to use both of the BCs during the loading process of the macrostructure. Starting initially with the Neumann BC leads to an overestimation of the displacement response and thus the strain state of the boundary value problem on the macroscale. An accompanying homogenization is performed after the strain reaches a limit strain. Dirichlet BCs are employed for the accompanying homogenization. Some numerical examples demonstrate the capability of the presented method. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off